The energy source powering the extreme optical luminosity of hydrogen-stripped superluminous supernovae (SLSNe-I) is not known, but recent studies have highlighted the case for a central engine. Radio and/or X-ray observations are best placed to track the fastest ejecta and probe the presence of outflows from a central engine. We compile all the published radio observations of SLSNe-I to date and present three new observations of two new SLSNe-I. None were detected. Through modeling the radio emission, we constrain the subparsec environments and possible outflows in SLSNe-I. In this sample, we rule out on-axis collimated relativistic jets of the kind detected in gamma-ray bursts (GRBs). We constrain off-axis jets with opening angles of 5° (30°) to energies of {E}{{k}}< 4× {10}50 {erg} ({E}{{k}}< {10}50 {erg}) in environments shaped by progenitors with mass-loss rates of dot{M}< {10}-4 {M}☉ {yr}}-1 (dot{M}< {10}-5 {M}☉ {yr}}-1) for all off-axis angles, assuming fiducial values {∊ }e=0.1 and {∊ }B=0.01. The deepest limits rule out emission of the kind seen in faint uncollimated GRBs (with the exception of GRB 060218) and from relativistic SNe. Finally, for the closest SLSN-I, SN 2017egm, we constrain the energy of an uncollimated nonrelativistic outflow like those observed in normal SNe to {E}{{k}}≲ {10}48 erg.
Coppejans, D.a.M. (2018). Jets in Hydrogen-poor Superluminous Supernovae: Constraints from a Comprehensive Analysis of Radio Observations. THE ASTROPHYSICAL JOURNAL, 856(1), 1-14 [10.3847/1538-4357/aab36e].
Jets in Hydrogen-poor Superluminous Supernovae: Constraints from a Comprehensive Analysis of Radio Observations
Migliori, G.;
2018
Abstract
The energy source powering the extreme optical luminosity of hydrogen-stripped superluminous supernovae (SLSNe-I) is not known, but recent studies have highlighted the case for a central engine. Radio and/or X-ray observations are best placed to track the fastest ejecta and probe the presence of outflows from a central engine. We compile all the published radio observations of SLSNe-I to date and present three new observations of two new SLSNe-I. None were detected. Through modeling the radio emission, we constrain the subparsec environments and possible outflows in SLSNe-I. In this sample, we rule out on-axis collimated relativistic jets of the kind detected in gamma-ray bursts (GRBs). We constrain off-axis jets with opening angles of 5° (30°) to energies of {E}{{k}}< 4× {10}50 {erg} ({E}{{k}}< {10}50 {erg}) in environments shaped by progenitors with mass-loss rates of dot{M}< {10}-4 {M}☉ {yr}}-1 (dot{M}< {10}-5 {M}☉ {yr}}-1) for all off-axis angles, assuming fiducial values {∊ }e=0.1 and {∊ }B=0.01. The deepest limits rule out emission of the kind seen in faint uncollimated GRBs (with the exception of GRB 060218) and from relativistic SNe. Finally, for the closest SLSN-I, SN 2017egm, we constrain the energy of an uncollimated nonrelativistic outflow like those observed in normal SNe to {E}{{k}}≲ {10}48 erg.File | Dimensione | Formato | |
---|---|---|---|
Coppejans_2018_ApJ_856_56.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.