In this paper we face the study of the representations of the exceptional Lie superalgebra E(5,10). We recall the construction of generalized Verma modules and give a combinatorial description of the restriction to sl5 of the Verma module induced by the trivial representation. We use this description to classify morphisms between Verma modules of degree one, two and three proving in these cases a conjecture given by Rudakov (8). A key tool is the notion of dual morphism between Verma modules.

Low Degree Morphisms of E(5, 10)-Generalized Verma Modules

Cantarini N.;Caselli F.
2020

Abstract

In this paper we face the study of the representations of the exceptional Lie superalgebra E(5,10). We recall the construction of generalized Verma modules and give a combinatorial description of the restriction to sl5 of the Verma module induced by the trivial representation. We use this description to classify morphisms between Verma modules of degree one, two and three proving in these cases a conjecture given by Rudakov (8). A key tool is the notion of dual morphism between Verma modules.
2020
Cantarini N.; Caselli F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/746275
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact