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LOW DEGREE MORPHISMS OF E(5,10-GENERALIZED VERMA
MODULES

NICOLETTA CANTARINI AND FABRIZIO CASELLI*

ABSTRACT. In this paper we face the study of the representations of the exceptional Lie
superalgebra E(5,10). We recall the construction of generalized Verma modules and give a
combinatorial description of the restriction to sl5 of the Verma module induced by the trivial
representation. We use this description to classify morphisms between Verma modules of
degree one, two and three proving in these cases a conjecture given by Rudakov [8]. A key
tool is the notion of dual morphism between Verma modules.

1. INTRODUCTION

Infinite dimensional linearly compact simple Lie superalgebras over the complex numbers
were classified by Victor Kac in 1998 [3]. A complete list, up to isomorphisms, consists of ten
infinite series and five exceptions, denoted by F(1,6), E(3,6), E(3,8), E(5,10) and E(4,4).
See also [1, 9, 10, 11] for the genesis of these superalgebras. Some years later Kac and Rudakov
initiated the study of the representations of these algebras [4, 5, 7, 6] developing a general
theory of Verma modules that we briefly recall.

Let L = ®jezL; be a Z-graded Lie superalgebra, let L_ = @;0L;, L4 = ®j50L; and
Lsy = Ly ® L;. We denote by U(L) the universal enveloping algebra of L. If F is an
irreducible Lg-module we define

M(F) = U(L) Qu(Ls) F

where we extend the action of Ly to L>¢ by letting L act trivially on F. We call M(F) a
minimal generalized Verma module associated to F. If M(F') is not irreducible we say that
it is degenerate.

In [4, 5, 7, 6], a complete description of the degenerate Verma modules for F(3,6) and
E(3,8) is given, as well as of their unique irreducible quotients. In [6] some basic ideas
and constructions are settled also for £(5,10). In this case Kac and Rudakov conjecture a
complete list of Ly-modules which give rise to the degenerate Verma modules (see Conjecture
4.6).

In 2010 Rudakov tackled the proof of the conjecture through the study of morphisms
between Verma modules. The existence of a degenerate Verma module is indeed strictly
related to the existence of such morphisms of positive degree (see Proposition 3.5). In [§]
Rudakov classified morphisms of degree one and gave some examples of morphisms of degree
at most 5. He also conjectured that there exists no morphism of higher degree and that
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his list exhausts all the examples. A more general family of modules, possibly induced from
infinite-dimensional sl5-modules, had been studied in [2], where some of Rudakov’s examples
in degree one and two had been obtained through the use of the computer.

In this paper we study morphisms between generalized Verma modules and to this aim we
analyze the structure of the universal enveloping algebra U_ = U(L_) as an Ly-module. This
analysis has its own interest and provides an explicit combinatorial description of the action
of Ly. This description is the main ingredient in our study of morphisms, together with a
systematic use of the dominance order of the weights of the Lyp-modules. Our main result is
the proof of Rudakov’s conjecture in degree two and three (see Theorems 9.8, 10.15). A useful
observation that we made is that if there exists a morphism ¢ : M (V) — M (W) between
generalized Verma modules of degree d, then there exists a dual morphism ¢ : M(W*) —
M (V™) of the same degree. This duality is here proved in low degree for the purpose of this
work but it holds in a much wider context as a consequence of the fact that the conformal
dual of a Verma module is itself a Verma module. This will be shown in a forthcoming paper.

The paper is organized as follows: in Section 2 we recall the basic definitions and fix the
notation. Section 3 is dedicated to Verma modules. Here we characterize degenerate Verma
modules in terms of singular vectors and morphisms. In Section 4, following [8], we give
examples of morphisms of degree one, two and three. Section 5 contains our first main result
on the structure of U_ as an Lg-module: we construct an explicit basis of U_ and describe
its combinatorial properties. Section 6 is dedicated to the analysis of the dominance order of
the weights of the basis elements of U_. In Section 7 we develop the idea of dual morphism
between generalized Verma modules and establish sufficient conditions for the existence of
such a morphism (see Remark 7.2). Finally, Sections 8, 9 and 10 contain the classification of
morphisms of degree one, two and three, respectively.

We thank Victor Kac for useful discussions.

2. PRELIMINARIES

We let N = {0,1,2,3,...} be the set of non-negative integers and for n € N we set
[n]={ieN|1<i<n}.

If P is a proposition we let yp = 1 if P is true and yp = 0 if P is false.

We consider the simple, linearly compact Lie superalgebra of exceptional type L = E(5, 10)
whose even and odd parts are as follows: Lg consists of zero-divergence vector fields in five
(even) indeterminates z1, ..., s, i.e.,

5
Li=S={X=Y fi0;| fi € Cllx1,...,x5]],div(X) = 0},
=1

where 9; = 0,,, and L1 = Q2 consists of closed two-forms in the five indeterminates 1, . . . , zs.
The bracket between a vector field and a form is given by the Lie derivative and for f,g €
C[[z1, - .., x5)] we have

[fdz; A\ dxj, gdxy, A dxy| = €55 f 9O,
where, for 4, j, k,l € [5], €, and t;;; are defined as follows: if |{i, j,k,(}| = 4 we let ¢, € [5]
be such that {7, j, k,[,t;ju}| = 5 and €, be the sign of the permutation (¢, 7, k, 1, ;). 1If
{4, J, k,l}| <4 we let t;;; = 1 (this choice will be irrelevant) and ;5 = 0.

From now on we shall denote dx; A dx; simply by d;.

ijkl



3

The Lie superalgebra L has a consistent, irreducible, transitive Z-grading of depth 2 where,
for k € N,

Lgk,Q = <f81 | 1= 1,...,5,f € C[[Z’l,...,fﬂg,]]k) ﬂS5
szfl = <fd1j ‘ Z,j = 1,. . .,5,f € (C[[.fl,. .. ,Zl’)5]]k> ﬂle

where by C[[z1, ..., x5]]r we denote the homogeneous component of C[[zy, ..., z5]] of degree
k.

Note that Ly & sls, L_y = (C%)*, L_; = A°C® as Ly-modules (where C® denotes the
standard sls-module). We set L_ = L_o @ L_y, Ly = ®;50L; and Lo = Lo & Ly. We
denote by U (resp. U_) the universal enveloping algebra of L (resp. L_). Note that U_ is an
Lg-module with respect to the adjoint action: for x € Ly and u € U_,

r.u = [r,u] = ru — uz.

We also point out that the Z-grading of L induces a Z-grading on the enveloping algebra
U_. It is customary, though, to invert the sign of the degrees hence getting a grading over
N. Note that the homogeneous component (U_)y of degree d of U_ under this grading is an
Lg-submodule. Section 3 will be dedicated to the study of these homogeneous components.

We fix the Borel subalgebra (x;0;, h;j = x;0; — x;0; | i < j) of Ly and we consider the
usual base of the corresponding root system given by {aqa, ..., a45}. We let A be the weight
lattice of sl; and we express all weights of sl; using their coordinates with respect to the
fundamental weights wis, wag, wsy, wys, i.e., for A € A we write A = (Ajo,...,\y5) for some
)‘ii-f—l € 7Z to mean A= )\12(}.}12 + -4 )\45&)45.

For ¢ < j we denote as usual

j—1
Q5 = E Ok k41
k=i

and aj; = —ay;. For notational convenience we also let a; = 0. Viewed as elements in the
weight lattice we have
Q12 = (27 _17 Oa O)a Qo3 = (_17 27 _17 0)7 Q34 = (07 _17 27 _1)7 Q45 = (Oa Oa _17 2)

If A € A is a weight, we use the following convention: for all 1 <i < 7 <5 we let

F(a,b,c,d) the irreducible sls-module of highest weight A. In this paper we always think of
F(a,b,c,d) as the irreducible submodule of

Sym®(C?) @ Sym®(A’(C")) @ Sym“(A’(C?)*) @ Sym”((C7)")
generated by the highest weight vector x¢%,x%:r:? where {z1,..., x5} denotes the standard

basis of C°, z;; = x; A x;, and 2} and xy; are the corresponding dual basis elements. Besides,
for a weight A = (a, b, ¢, d) we let \* = (d, ¢, b,a), so that F(A\)* = F(\*).
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Notice that L, = F(l, 1,0,0) and that z5dys5 is a lowest weight vector in Ly. Moreover, for
j > 1, we have L; = L.

3. GENERALIZED VERMA MODULES AND MORPHISMS

We recall the definition of generalized Verma modules introduced in [4]. For the reader’s
convenience we also sketch some proofs of basic results. Given an Lg-module V' we extend it
to an L>g-module by letting L act trivially, and define

MWV)=U QU (Lso) V.

Note that M (V') has a L-module structure by multiplication on the left, and is called the
(generalized) Verma module associated to V. We also observe that M(V) = U_ ®¢ V as
C-vector spaces.

If V' is finite-dimensional and irreducible, then M (V) is called a minimal Verma module.
We denote by M () the minimal Verma module M (F'(\)). A minimal Verma module is said
to be non-degenerate if it is irreducible and degenerate if it is not irreducible.

Definition 3.1. We say that an element w € M(V) is homogeneous of degree d if w €
(U-)a® V.

Definition 3.2. A vector w € M (V) is called a singular vector if it satisfies the following
conditions:
(i) ;011w =0 for every i = 1,...,4;
(ii) zw = 0 for every z € Ly;
(ili) w does not lie in V.

We observe that the homogeneous components of positive degree of a singular vector are
singular vectors. The same holds for its weight components. From now on we will thus assume
that a singular vector is a homogeneous weight vector unless otherwise specified. Notice that
if condition (i) is satisfied then condition (ii) holds if z5dssw = 0 since x5dys5 is a lowest weight
vector in L.

Proposition 3.3. A minimal Verma module M (V') is degenerate if and only if it contains a
singular vector.

Proof. Let w € M (V') be a singular vector. We may assume that w is homogeneous of degree
d > 0. Hence the singular vector w generates a submodule of M (V') which is proper since it
is contained in @>q(U_)r @ V.

On the other hand, if M (V) is degenerate let us consider a proper non-zero submodule W
of M(V'). Let z € W be a non-zero vector. By repeatedly applying L; to z if necessary we can
find a non-zero element w € W such that Liw = 0, since the action of L, lowers the degree
of the homogeneous components of z by 1. We observe that L; vanishes on the Ly-module
generated by w. Any highest weight vector in such a module is a singular vector. O

Degenerate Verma modules can also be described in terms of morphisms. A linear map
©: M(V)— M(W) can always be associated to an element ® € U_ ® Hom(V, W) as follows:
forue U_ and v € V we let

plu@v) =ud(v)
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where, if & =) u; ®6; with u; € U_, 6; € Hom(V, W), we let ®(v) = > . u; ®6;(v). We will
say that ¢ (or @) is a morphism of degree d if u; € (U_), for every .

The following proposition characterizes morphisms between Verma modules.

Proposition 3.4. [8] Let ¢ : M(V) — M (W) be the linear map associated with the element
¢ € U_ @ Hom(V,W). Then ¢ is a morphism of L-modules if and only if the following
conditions hold:

(a) Lg(b = O,’

(b) t®(v) =0 for every t € Ly and for everyv € V.

We observe that if M (V') is a minimal Verma module and condition (@) holds it is enough
to verify condition (b) for an element ¢ generating L; as an Lg-module and for v a highest
weight vector in V.

Proposition 3.5. Let M(u) be a minimal Verma module. Then the following are equivalent:
(a) M(u) is degenerate;
(b) M(p) contains a singular vector;
(c) there ezists a minimal Verma module M(X) and a morphism ¢ : M(X) — M(u) of
positive degree.

Proof. We already know that condition (a) is equivalent to condition (b) by Proposition 3.3.
Assume condition (c) holds: if s € F(\) is a highest weight vector, then ¢(1® s) is a singular
vector in M (u).

On the other hand, if w is a singular vector in M (u), we can define ¢ : M(A(w)) — M (u)
as the unique morphism of L-modules such that ¢(1®s) = w, s being a highest weight vector
in M(A(w)). O

Remark 3.6. Let ¢ : M (V) — M (W) be a linear map of degree d associated to an element
¢ € U_ ® Hom(V, W) that satisfies condition (a) of Proposition 3.4. Then there exists an
Ly-morphism v : (U_)} — Hom(V, W) such that ® = ). u; ® ¥(uf) where {u;,i € I} is any
basis of (U_)q and {u},i € I'} is the corresponding dual basis.

Definition 3.7. Let M (;) be a minimal Verma module and let 7 : M (p) = U_ ® F(u),, be
the natural projection, F'(y), being the weight space of F'(1) of weight p. Given a singular
vector w € M (u) we call 7(w) the leading term of w.

Proposition 3.8. If w is a singular vector in M (u) then:

(i) m(w) #0;

(ii) if two singular vectors in M(u) have the same leading term then they coincide.

Proof. If w is a weight vector homogeneous of degree d then we can write w = ). u; ® v; for
some basis {u;} of (U_)4 consisting of weight vectors and v; € F'(u),, for some weight ;. Let
A, be maximal in the dominance order such that v;, # 0. Then v;, is a highest weight vector
in F(p). Indeed, for r < s we have:

0=zx,0,w= Z[mras, ;] ® v; + Z Uu; @ x,05.0;.

(2

By the maximality of \;, it follows that x,0s.v;, = 0. (i7) follows from (7). O
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4. EXAMPLES

In this section we give some examples of singular vectors and the corresponding morphisms
of Verma modules. These were described in [8]. We will need the following technical result.

Lemma 4.1. Let ¢ : M(A\) — M(W) be a morphism of Verma modules of degree one
associated to ® = ZKj dij ® 0;; and let s be a highest weight vector in F(X). Let W be
an Lo-module containing W and let 6;; € Hom(F (), W) be such that the map (U-)} —
Hom(F'(X\), W) given by d; — 0;; is well defined and Lo-equivariant. Then 0;;(s) = 0;(s)
implies 6;5(v) = 0;;(v) for all v € F(A).

Proof. Tt is enough to show that if 6;;(v) = 6;(v) for some v € F()\) and all i # j, then
0, (xp0k.v) = 0;;(z40.v) for all i # j and h # k. We have:
éij (:chﬁk.v) = .Qihak(éij (U)) — (xhﬁkél])(v) = l’hak(éij (U)) + 5hiékj(v) + (5hj§ik(v)
== xhék(ﬁij (U)) + 5hi9kj(v) + 6hj0ik(v) == Qij (xhak.v)
where we used Remark 3.6 in order to write the action of Ly on the 6;;’s. Namely, we have:
2p0k.0ij = —0niOkj — 0nj0ik
where if r > s, 0,, = —0,,. O
Example 4.2. Let us consider the Verma module M (m,n,0,0). We first observe that dis ®
a2, is a singular vector in M (m,n,0,0). Indeed, fori =1,...,4,
;04 1d12 ® 27" x = 0;
besides,
.T5d45d12 & l’gnl’?Q = LL’563 &® LUTLL’?Q = 0.
By Proposition 3.5 we can define a morphism of Verma modules V4 : M(~m,n +1,0,0) —
M(m,n,0,0) by setting V4(1®s) = diy®@z7"?,. By Lemma 4.1 used with W = Sym™(C®)®
Sym™(A’C?) we have that V4 is associated to:

> di @ % e U_ @ Hom(F(m,n +1,0,0), F(m,n,0,0)).

i<j Y

Example 4.3. Let us consider the Verma module M (m,0,0,n + 1). One can check that
Z?=2 dij @ xa}(z5)" is a singular vector in M(m,0,0,n + 1), with leading term dj5 ®
' (zf)"™. By Remark 3.5 we can define a morphism of Verma modules Vg : M(m +
1,0,0,n) — M(m,0,0,n+ 1) by setting Vp(1® s) = Z?:z dyj @ x7'2}(x5)". By Lemma 4.1,
we have that Vg is associated to

> di; @ (2705 — 430)).

i<j
Example 4.4. We shall now exhibit a singular vector in M (0,0, m + 1,n). To this aim it is
convenient to think of F(0,0,m + 1,n) as the dual Ly-module F'(n,m + 1,0,0)*. We shall
later investigate the role of duality between Verma modules in Section 7, where we will show,
in particular, that the morphism we are going to construct can be seen in a certain sense as
the dual of the morphism V4 defined in Example 4.2.
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Let us observe that the vector }_,_, di; ®xj;(xy5)™ (23)" is a singular vector in M (F(n, m+

is)™
1,0,0)*) (with leading term dy5 ® (x}5)™ " (zE)™). Indeed one immediately checks that
Ok 41(D 5 dig @ 75 (235)™ (23)") = 0 for every k = ,4. Besides, we have:

wsdas (Y dij @ (i)™ (w5)")

i<j
= 503275(}5) " (75)" — 2500273(2]5) " (25)" + w501253(2)5)" (75)"
= m(IZ5)m_1(x;>n(x’162x§4 + X35 + 5U>1k4x;3> - ”(%5) (%)n 1<IT2I§ + o1y + xglx;ﬁ) =0.

Notice that, in fact,
Tapleg + Laclay + Laqlhe =0
and
Tt + xp.wn + vh,ap =0
in F(n,m+1,0,0)* for all a,b, c,d € [5], as one can check by applying these elements to the
highest weight vector xlxgﬂ in F(n,m+ 1,0,0) and using the Ly-action.

By Remark 3.5 we can thus define a morphism of Verma modules V¢ : M(0,0,m,n) —
M(F(n,m+1,0,0)%) by setting Vo(1®s) =3, _; dij @ x7;(x75)™ (25)". Once again, Lemma
4.1 implies that the morphism V. is associated to

Z dij ® LC:J
i<j

Examples 4.2, 4.3 and 4.4 imply the following result.

Proposition 4.5. Let m,n > 0. Then M(m,n,0,0), M(m,0,0,n) and M(0,0,m,n) are
degenerate Verma modules.

Kac and Rudakov proposed the following conjecture [6]:

Conjecture 4.6. Let a,b,c,d > 0 be such that M(a,b,c,d) is a degenerate Verma module.
Thena=b=0o0orb=c=0o0rc=d=0.

By Proposition 3.5 a possible strategy to prove Conjecture 4.6 is to construct all possible
morphisms between minimal Verma modules. One of the main results of this paper is a
complete classification of such morphisms of degree at most 3.

Example 4.7. The following are nonzero morphisms of degree 2:
e VpVa:M(m,1,0,0) - M(m—1,0,0,1);

e VeVp: M(1,0,0,n) — M(0,0,1,n + 1);
e VeV M(0,1,0,0) — M(0,0,1,0);
Indeed,
VEVa(l @ a'w1z) = Vp(dip @ 2') = —m Y _ dipdy; @ a2 # 0
j>1
VoVl @y (@3)") =D ) dydue @ x5 (23)" # 0

i>1 h<k

VeVa(l® xg) = dedij ® x;; # 0.

1<J
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We observe that the leading terms of these singular vectors are disdis ® x’ln_lm;, disdss &
ohs(22)" and djadys ® w5, respectively. (We also observe that the other compositions
VaVg, VaVe, VeV are not defined). Moreover, one can also verify that V4 = V% =
VZ = 0 whenever they are defined: this will also be a consequence of the general treatment
of morphisms of degree 2 in Section 9.

Example 4.8.

VeVpVa: M(1,1,0,0) — M(0,0,1,1)
is a nonzero morphism of degree 3. We have that VoV gV a(x1212) = Zj>1,k<l
is a singular vector in M (0,0, 1,1) with leading term dyaodi5dss @ xjx%

di2dy;dp@x; Ty

We will prove that the morphisms described in this section are all possible morphisms
between minimal Verma modules of degree at most 3.

5. STRUCTURE OF U_

In order to classify morphisms between generalized Verma modules of a given degree we
need to better understand the structure of U_ as an Lg-module. The main result of this
section is the construction of an explicit linear basis of U_ which realizes its structure of
Lo-module in a combinatorial way.

We recall that (U_); denotes the homogeneous component of U_ of degree d. We let

Id = {] = ([1,...,],1) . ]l = (il,jl) with 1 S il;jl S 5 for every [ = 1,,d}
If1 = ([1, ... ,Id) € Iy we let df = d[l . 'd]d € (U_)d, with d[l = diljl‘

We set [5]% = {(t1,...,t) | t; € [5]} and for T = (¢y,...,t) € [5]* we let Or = O}, ... O,

We have that (U_), is spanned by all elements of the form d; as I varies in Z;. One can
also consider the following filtration of subspaces of (U_)4: for all £ < d/2 we let

(U—)dJc = Span{@TdI T e [5]k, IS Id_gk}.
We have the following chain of inclusions
(U)a=U)ao2U-)a1 2 (U-)a2 2 -

We observe that for all £ < d/2 the subspace (U-)qy is also an Ly-submodule of (U-)4 and
so we have the following isomorphism of Ly-modules

(U)a= @ (U-)ar/(U-)ani1,
k<d/2
where we let (U_)yx = 0if k > d/2. For example, we have
~ (U-)s50 o (U-)s1
(U )sa  (U-)se
Moreover, one can check that there is an isomorphism of Ly-modules ¢ : (U-)ar/(U-)dx+1 —

(U,)g, ©® (U7)5,2-

Sym*(C>) @ AY"*(A’C5): this isomorphism is simply given by extending multiplicatively
the following formulas

V(0;) = =7, ¢(dij) = ZTij.
(U-)a= P sym* (€)@ ATH(NC)

k<d/2

and so we have that



as Log-modules. The main goal of this section is to explicitly construct such isomorphism.
We need some further technical notation. If 1 < 4,5 < 5 we let (i,5) = (j,4). There is a

natural action of By, the Weyl group of type B and rank d, on Z; that can be described in

the following way. If w = (101, ...,1m404) € Bg, where o = (01,...,04) is a permutation of

[d] and n; = %1 for all j € [d], we let

w(l)=J
where
g = Lo =1
Iy, itn;=-1

The fact that this is a Bg-action is an easy verification and is left to the reader.

We let S; be the set of subsets of [d] of cardinality 2, so that |Sy| = (g)

Note that elements in Z; are ordered tuples of ordered pairs, while elements in S; are
unordered tuples of unordered pairs.

If {k,1} € Sgand I € T, we let t;, 1, = ti, joirg, a0d 1,1, = Eiy jire (S€€ Section 2).

Note that the definitions of ¢;, ;, and ¢y, ;, do not depend on the order of k and [ but only
on the set {k,l}. We also let

1
D{kJ}(I) = 5(_1)l+k81k,haﬁ1k,ll S (U—)Q'
For example, if I = ((1,2),(2,3),(3,5)) € Zs then Dy 33(I) = 2(—1)*¢1235004 = —104.

2 2
Definition 5.1. A subset S of S, is self-intersection free if its elements are pairwise disjoint.

For example S = {{1,3},{2,5}, {4, 7}} is self-intersection free while {{1,3},{2,5},{3,7}}
is not. We denote by SIF; the set of self-intersection free subsets of Sy.

Definition 5.2. Let {k,l},{h,m} € S, be disjoint. We say that {k,l} and {h,m} cross if
exactly one element in {k,[} is between h and m. If S € SIF; we let the crossing number
c(S) of S be the number of pairs of elements in S that cross.

For example, if S = {{1,3},{2,5},{4,7}} then {1,3} and {2,5} cross, {1,3} and {4, 7} do
not cross, and {2,5} and {4, 7} cross, so the crossing number of S is ¢(S) = 2 (see Figure 1
for a graphical interpretation).

Definition 5.3. Let S = {Sy,...,5,} € SIF;. We let
Ds(1) = T Ds, () € (U )
=1

if r > 2 and Dy(I) = 1 (note that the order of multiplication is irrelevant as the elements
Dg,(I) commute among themselves).

Definition 5.4. For [ = (I4,...,1;) € Zyand S = {54,...,S5,} € SIF,; we let Cs(I) € Zy_o,
be obtained from / by removing all /; such that j € Sy for some k € [r].

For example, if d =7 and S = {{1,4},{2,7}} then Cs(I) = (I3, I5, I). We are now ready
to give the main definition of this section.
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FIGURE 1. A graphical interpretation of the crossing number

Definition 5.5. For all I € 7; we let

wr= Y (=)Dg(I)deyr) € (U-)a.

SeSIFy

For example, if I = (21, 13,45,25) € Z, we have

Dy(I) = 1;

D sy(I) = —10;

Dios1(1) = +%82;

D{2,4}(I) = -l-%@x;

Dy sy g2,y (I) = Dy gy (1) Dya,ay (1) = — 9504

and all other Dg(/) vanish. We also have, ¢({{1,3},{2,4}}) =1 so

1 1 1 1
wr = dy — =03dy3das + —0ada1das + = 0sdordas + —0504.
2 2 2 4
Proposition 5.6. For all [ € Z; and all g € By we have
Wy(1) = (—1)Z(g)w1,

where £(g) is the length of g with respect to the Coxeter generators {sg, S1, S2, ..., S4—1}, with

so=(—1,2,3,...,d) and s1,...,54_1 the usual simple transpositions.
Proof. Tt is enough to verify the statement for g € {sg,...,sq-1}. If ¢ = s we have, for all
kL1 <k Il<d:

® Eso(Dp,so(I) = (_1)X1€{k’l}€1k,fz;
® Lso(Ipso(l) = Ll 15
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hence Dg(so(1)) = (—1)X¢5Dg (1) while deg(so(1)) = (—1)X*#5dcg (1), and therefore we have

woy = Y (=1 Dg(so(I))deg(so(ry

SeSIF,
= 3 (D) )Re (D19 de (1)
SeSIF,
= —Wwr.
Now let h € {1,...,d — 1} and, for notational convenience, let o = s,. We have:

® So(Dp,oI) = €L,y Ioqy
® to(D)po() = ti,pIoa);
° (_1)k+l — (_1)U(k)+0(l)+Xhe{k,l}+Xh+1€{k,l}

hence Dg(o(I)) = (—1)Xrestxnties D g (1), where “h € S” means that h belongs to some
element of S. We also observe that

(_1)0(5) — (_1)0(0(5))<_1)Xhes, ht1€S, {h,h+1}¢S
i.e. the parity of the crossing number of S is opposite to the parity of the crossing number of

o(9S) precisely if h and h + 1 belong to two distinct elements of S. Moreover we observe that
des(o(r)) = d, g ) I b or h+ 1 belong to S. If h,h + 1 do not belong to S we have

des(o(r)) = —dc, 1) — 2Dy (Dde, o ()

where S is obtained from S by adding the pair {h,h + 1}. We are now ready to compute
Wo(r)- We have

wotn = Y, (=1)Ds(a(1))dog(or
SeSIF,

= > (=) Ds(a(I))deg(owm)
S>hor Soh+1but SF{h,h+1}

py <(—1)C(S)Ds(0(1))dcs<so<1>)+(—1)C(S)D5(0(f))d%<a<f)>)
SFh,h+1

— Z (—1)Xnes h+1eS(_1)6(0(5))(_1)XheS+Xh+1eSDO_(S)(I)dcg(s)(l)
S3hor Soh+1but SF{h,h+1}

+ Z ((_1)6(0(5))D0(5)(I)(_dCa(s>([) - 2D{h7h+1}(l)d0(,(5)(1)) + (_1)C(U(S))Da(§)(I)dCU(g)(I)>

SFh,h+1
== > (=D Doty (Dde, gy = Y (=1 Dogs)(Nde, .1
S>hor Soh+1but SF{h,h+1} SZh,h+1
+ Z <(—2)(—1)6(0(5))1)0(5)(I)D{h,thl}(])dCa(g)(I))+(_1)0(0(5))Da(§)(I)dca(g)(f))
SFh,h+1
= — Z (—1)0("(5))DJ(S)([) dcg(s)(l)
SeSIF,

= —wl
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where we used that Dy (s)(1) Dpni1(I) = Dy5(1) and (=1)5) = (—1)ce®), O

Corollary 5.7. If I = (I1,...,14) is such that I; = I}, for some j < k, then w; = 0; if I; = I
for some 7 < k, then w; = 0.

Now we want to study the action of Ly on the elements w;. If I = (I3, ..., I;) and r appears
once in I, for some b we let I>*" be the sequence obtained from I by substituting the letter
rin I, by s. We want to prove the following

Theorem 5.8. Let [ € Z; and r,s € [5], r # s. Assume that the letter r appears in Iy, ..., I,
once in each pair, and does not appear in I..1,...,1;. Then

Ts0p.wp = E Wib,s,r-

Proof. For notational convenience, since r and s are fixed in this proof, we simply let I® = 57
for all 1 < b < c. We start by calculating the left-hand side. We have

Slisa Wy = .1‘58 Z C(S DS dcs([)

Now we observe that x,0,.Dg (1) is non zero if and only if I}, and I; have the four indices
distinct from s, hence k£ and [ cannot be both less than or equal to ¢ or both strictly greater
than c¢. We then assume that £ < c and [ > ¢; in this case we have

1
Z‘sar.D{kJ}(S) = Ty 8 ( ( >k+l<€lk,llat1k,ll> = §<_1)k+l+1€]kallar'
So we have
1
r,0pwy = Z 5( 1) e 1,1, 0r Z I Ds (1) d%u{w( )+
k<c<l, s¢ I}, s¢I SZk,l
+ 3 (=0ODs(1) D deymy
S b<c, b S

Now we compute the right-hand side:

wab = Z Z C(S DS )dCs(Ib)-

bv<c b<ec S
Now we observe that if b ¢ S we have Dg(I°) = Dg(I) and so we reduce to prove the following:
1 C C
Z 5( k+l+151k 1,0 Z ) Ds(I dCSu{k ) = Z (=1) (S)DS(Ib)dCS(Ib)
k<c<l,s¢Iy,s¢l SZk,l S,b:b<c, beS

We notice that if {b,b'} € S with both b, 8" < ¢ then Dg(I*) = —Dg(I") hence we reduce to
prove that

1 k+1
Z 5( ++1€Ik Ila Z dCSU{kl}(I)

k<c<l, S¢Ik7 5¢Il S%kl
Z Z ) Dy, z}([b)Ds([b)dcsu{byl}(zb)-
b<c<l S: SHb,l
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Finally, in order to prove this last equation we observe that if b < ¢ < I then Dy, (I°) is
nonzero only if s ¢ I, I;, that in this case &), vy, = —€1,.1,, that Dy gy (1°) = —3(=1)"ey, 1,0,
and that chU{bl}([b) = dcg,,, (1. The proot is complete. O

If 7 = (Il, R ,Id) with Ik = (Zk,jk) we let

Dy r(Wr) = 67y W((s,1) T2 La) FOr s W((i1,8), T2 L) TOriaW (I (5.52) T3 L) T 00 (1o Lay (i0,8))

Corollary 5.9. Let I = (Iy,...,1;) be arbitrary. Then
xsarwl = Ds—>r<w1)-

Proof. 1f there exists k such that i, = j; then w; = 0 and clearly also Ds_,,(w;) = 0 since
all summands in the definition above vanish except possibly two of them which cancel out.
If such k does not exist let w € By be such that J = w([) satisfies the following property:

there exists 0 < ¢ < d such that r appears in Ji, ..., J. and does not appear in J.iq,...,Jg.
By Theorem 5.8 we know that the result holds for J hence the result follows since D,
commutes with the action of B, (we leave this to the reader). 0J

Corollary 5.10. The map
e P sym (€)@ ATHAC) = (U)a
k

given by
QO(ZE; o l’:k Y VAN xid72k]‘d—2k> - atl T atkw(il7j1)7---7(id—2k7jd—2k)
for all k < d/2 and ty, ..., tk,01,J1,- -, a2k, Ja—2k € [B] s an isomorphism of Lo-modules,
hence the set
U {awa ‘ T = (tl, N ,tk) S [5]k,t1 < e < tk,[ € Id—Qk/Bd—Qk}
k<d/2

is a basis of (U_),.

6. PROPERTIES OF THE DOMINANCE ORDER

In this section we establish simple combinatorial criteria to determine whether the weights
of vectors in U_ and (U_)* are comparable.

Remark 6.1. If ¢ : M(V) — M (W) is a linear map of degree d which satisfies condition (a)
of Proposition 3.4 let ¢ : (U-)% — Hom(V, W) be as in Remark 3.6. By Corollary 5.10 we can
identify (U_)z; with @, Sym*(C?) @ A" (A*(C)*) and we let for all T = (ty,...,t;) € [5]F
and I = ([1, R >[d72k) € Ly_op, with I, = (ih,jh),

07 = (wy - 1y, @I} Ao AT} ).

1151 id—2kJd—2k

We observe that 95(1) = (—1)"9¢T for every g € By_o, hence Orw; ® 0T is invariant with
respect to the action of By_s, on I. We can thus write

b = Z Z 8Tw1®91T.

T=(t1,.tr): I€Lq—2x/Ba—2k
1<t <<t <5
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Moreover, we have:
k d—2k

T _ [APREN _ h T l T
xsar'el - :ﬂs&ﬂh ..... Ig_op — E :AS—WQI - E D’/‘—>s 1
=1

h Ty Uiyeestn—158,tht 150005l
where AY , (07) = 6,4,0; and

! TN _ s T T
Drﬁs(el) - 5”:30117~~-7sz17(ﬁjz)711+1 77777 Tq—ok + 53le9117~-~71171,(im“),11+1 ,,,,, Ig—ok-

We now study the dominance order on the weights of the elements dr, wy and 6. This will
turn out to play a fundamental role in the study of morphisms of Verma modules.
We observe that dy; is a weight vector for Ly. Indeed we have:

[ij, dra] = (Oip + 0ig — O — 051)
and so A;;(dy) is the number of occurrences of ¢ minus the number of occurrences of j in
{k,1}. It I = (i1,...,1q) is a sequence of integers and we let
mi(l) = |{s €[d] : is =k}|
be the multiplicity of k in I, we have
)\ij(dkl) =m;(k,l) — mj(ka ).
More generally, if I = {i1,j1,... %4, ja} and d; = d;,;, - - - d
Aij(dr) = mi(I) — my(I).
In order to understand when the weights of d; and di are comparable in the dominance
order, we first observe that the weight of d; does not depend on the order of its entries. If
I = (i1,...,i2q) we let I, = (i},...,i5,;) be the non decreasing reordering of I. We write

I < Kitid <k,. iy, <kj,and I < K if I < K and at least one of the previous
inequalities is strict (notice that this is different that requiring I # K).

Proposition 6.2. For all I, K € Z; we have A(d;) > Adg) if and only if I < K.

Proof. We can assume that I = (iy,...,i59) and K = (kq,...,kog) are such that I = I,
and K = K,. We express the difference of the weights as a linear combination of roots. First
assume that all entries of I and K coincide except in position r and that i, = hand k, = h + 1.
We have m;(I) = my(K) for all l # h,h+1, my(I) = mp(K)+1 and mp41 (1) = mp1 (K) — 1.
Therefore )\l,l—i-l(dl) = >\l,l+l(dK) for all [ 7é h — 1,h,h + 1, )\h—l,h(dl) = )\h—l,h(dK) + 1, (lf
h 7& 1), )\h,h+1<dl) = )\h,h+1<dK) —2 and )\h+1,h+2(dl) = )\h+1,h+2(dK) +1 (1f h 7é 4) Therefore

/\(d]) — )\(dK) = Op h+1-

inja We have

From this we can deduce that
)‘(df) - /\(dK) = iy by T Qg ey T Qi gy -
In particular, if 41 < ky, ..., i5q < kog then A(d;) > A(dk). Now we assume that the inequali-

ties i1 < k1,...,12q9 < kog are not all satisfied and we let r be minimum such that i, > k,. If
we express A(d;) — A(dg) as a linear combination of the simple roots then ay, .., necessarily
appears with a negative coefficient and we are done. O

Corollary 6.3. For all I, K € Z; and all T, R € [5]* we have:
(i) MOF) < XNO%) if and only if I < K ;
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(i) AOT) > N(0F) if and only if T < R.

Proof. In order to prove (7) it is sufficient to notice that A(67) = —(A\(Orwr)) = —A(Or)—\(dr)
and then use Proposition 6.2.

In order to prove (ii) it is convenient to introduce the following notation. For ¢ € [5]
let ) < t@ < 1B < ™ such that {t,tM,t@ ¢ WY = [5] and, for T = (ty,...,t) € [5]
T = (tgl)t§2),t§3)t§4), . ,tg)tf),t,(f)t,(f)) € Zo,. Then it is enough to notice that A(Jr)
A(dre) and that T < R if and only if 7¢ > R°. Then one can use (i).

=

€

o .=

7. DuALITY

Consider a morphism ¢ : M(V) — M(W) of generalized Verma modules of degree d
associated to an element ® € (U_); ® Hom(V,W). We ask the natural question: does it
exist a “related” morphism ¢ : M(W*) — M(V*) of the same degree d? The first natural
candidate to look at is the following: if ® = > .u; ® 6;, where {u; | i € I} is any basis
of (U_.)q and 0; € Hom(V, W) then we can consider the linear map ¢ : M(W*) — M(V*)
associated to U = >, u; ® 07, where, for all § € Hom(V, W) we denote by * € Hom(W*, V*)
the pull-back of 6 given by 6*(f) = f o0 for all f € W*. One can easily check that the map
¢ does not depend on the chosen basis {u; | i € I} of (U_)4. It turns out that for d =1 the
map v is also a morphism of L-modules, but this is not the case in general if the degree d is
at least 2.

In this section we develop some tools which will allow us to construct a morphism of L-
modules ¢ : M(W*) — M(V*) starting from a morphism ¢ : M (V) — M (W) of degree at
most 3 and we conjecture that our construction provides such morphism in all degrees.

The main result that we will need is the following.

Proposition 7.1. Let 6y,...,0,,01,...,05 € Hom(V,W) for some Ly-modules V', W, and
let zy,...,2 € Lo. Let a;, b, € C be such that

2

Z a;0;(v) + Z bk (2k-(0j(v)) + 0j(z0)) =0 € W

forallv e V. Then

Zazﬂf(f) + ij,k(zk.((_a;)(m + (=) (2. f)) =0 € V*

for all f € W=,
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Proof. For all v € V we have

(;aﬂ:(f) + Db (o)) + (=05 (1)) ) (0)
=X a;}(ei(v» + Z by (75 (F))(20.0) + (21 ) (5 (1)
= Z aif (6:(v)) + 2}; by (f(o(z0)) + f(z1-(0(v)))
=/ ( Z a:b;(v) + ]Z by (05 (0) + 2. (05(0))

j.k
=0.
O
Remark 7.2. We will use Proposition 7.1 also in the following equivalent formulation: let

01,...,0., o1,...,0, € Hom(V,W) for some Lg-modules V, W and zi,...,2, € Lg. Let
a;, bj € C be such that

Zaiei(v) + ij,k(zzk.(o—j(v)) — (2.0;)(v)) =0 € W

for all v € V. Then
SZadi (1) + S a2 (-o]) (1) = G- ) =0 € V"

for all f € W=,

Conjecture 7.3. Let ¢ : M(V) — M(W) be a morphism of degree d associated to ¢ =
> or Orwr ® 0F for some 0] € Hom(V,W). Then the linear map ¢ : M(W*) — M(V*)
associated to W := Y Orwr @ (—1)° M(OTY* is also a morphism of Verma modules, where if
T € [5)%, we let {(T) = k.

In the following sections we will verify Conjecture 7.3 for morphisms of degree at most 3
as a straightforward application of Proposition 7.1.

Definition 7.4. Let ¢ : M(\) — M (u) be a morphism of Verma modules. The weight ¢ — A
is called the leading weight of ¢.

The reason of the terminology in the previous definition is motivated by the following
observation.

Remark 7.5. Let ¢ : M(\) — M(u) be a morphism of Verma modules of leading weight v.
If ¢ is associated to ® = >, u; ® 0;, where {u; | i € I} is a basis of (U_)4 consisting of weight
vectors, let 0;, be of maximal weight such that 6;,(s) # 0 for a highest weight vector s € F()).
Then 6;,(s) is a highest weight vector in F'(11) and so the weight of 6, is the leading weight
of ¢. Therefore if ¢ has leading weight v the leading term of the singular vector ¢(1 ® s) is

:\(0;)=v
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We also say that § € Hom(V, W) has the leading weight of ¢ if 6(s) # 0 and the weight of 6
is v. A general strategy to study a morphism ¢ : M (V) — M (W) is to understand elements
0 € Hom(V, W) which have the leading weight of ¢; in particular we will often show that
there is no such morphism by showing that there is no § € Hom(V, W) that may possibly
have the leading weight of a morphism.

Whenever Conjecture 7.3 holds the next result allows us to simplify the classification of
morphisms.

Remark 7.6. Let ¢ : M(V) - M(W) and ¢ : M(W*) — M(V*) be morphisms of Verma
modules and let v = (a, b, ¢, d) be the leading weight of ¢. Then the leading weight of ¢ is
—v* =—(d,c,b,a).

8. MORPHISMS OF DEGREE ONE

In this section we classify morphisms of degree one between generalized Verma modules,
slightly simplifying Rudakov’s argument [8].
We let C(a, b, ¢) be the set of cyclic permutations of a, b, ¢, i.e., C(a, b, c) = {(a,b,¢), (b, c,a),
(c,a,b)}.
Theorem 8.1. Let p: M (V) — M (W) be a linear map of degree one associated to
o = Z wr ® 9[
I€1y /B

such that Ly.® = 0. Then ¢ is a morphism of Verma modules if and only if for all distinct
a,b,c,p € [5] and for all v € V we have

(1) Z 2p0y.(0ap(v)) = 0.
(a,8,7)€C(a,b,c)

Proof. By Proposition 3.4 it is enough to check when z,d,,®(v) = 0 for all p,q € [5]. For
notational convenience we let @) = (p,q) and {a,b, ¢, p,q} = [5]. We have:

ZL'deCI)(U):ZL'de Z (.U[®6](U):$pd@ Z d[®0[(1))

IEIl/Bl ]EIl/Bl
= Z 5Q,pratcg,1'(61(v)) = Epgabe Z Lp0Oy-(0ap(v))-
IEIl/Bl (a,ﬂ,’y)EC(a,b,c)
0J

Remark 8.2. We point out that Equation (1) satisfies the hypotheses of Proposition 7.1
since in this case

70y.(0ap(v)) = Oap(xp05.0)
hence we can write

s (B (1) = 5 (10 (B (0) + sy ;.0).

Conjecture 7.3 then holds in degree one. This will be also confirmed by Theorem 8.4.
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Proposition 8.3. Let ¢ : M(\) — M(u) be a morphism of Verma modules of degree one
and let Oy have the leading weight of @. Then if i < j are distinct from h, k we have

Wi = —Xi<h<j — Xi<k<j-
Proof. Consider Equation (1) with p = j, ¢ =4, a = h, b = k and v = s a highest weight
vector in F'(A):
;0;.(Oni(5)) + 20k (0in(s)) + ;00 (6ri(s)) = 0.

Now we apply z;0; to this equation. We have

hij.(Onk(S)) — Xi<k<iOkn(8) — Xich<jOrn(s) =0
and the result follows. O

Theorem 8.4. Let ¢ : M(\) — M(u) be a morphism of Verma modules of degree one. Then
one of the following occurs:
e \=(m,n+1,0,0), u = (m,n,0,0) for some m,n >0 and, up to a scalar, p =V 4.
e \=(m+1,0,0,n), u = (m,0,0,n+1) for somem,n >0 and, up to a scalar, p = Vp.
e A= (0,0,m,n), p=(0,0,m+ 1,n) for some m,n >0 and, up to a scalar, p = V.

Proof. Let 0y, have the leading weight of ¢. By Proposition 8.3 we have that if (h, k) #
(1,2),(1,5),(4,5) we can find 4, j such that p,; ; < 0, a contradiction. Proposition 8.3 also
provides

[ ] /J/375 =0 lf (h, k) = (1,2),
® [io4 = 0 if (ha k) = (175)7
o 115 =0if (h k) = (4,5),

and the rest follows using Lemma 4.1 and Proposition 3.8 recalling that A(0n,) = —A(dpi). O

9. MORPHISMS OF DEGREE 2

In this section we provide a complete classification of morphisms between Verma modules
of degree 2. We will make use of the following preliminary result which holds in a much wider
generality. Here and in what follows we denote by (p, ¢, a, b, ¢) any permutation of [5] and we

set Q@ = (p,q).

Lemma 9.1. Suppose that & = ZT’I Orwr @ 0F defines a morphism of Verma modules
w0 : M(V)— M(W). Then for allt,...t, € [5], I1,...,Ix € Iy and v € V we have

1,0y th o
E SQ,Il'patQdel ... dJT X 911,...,Ik,I,J1,...,JT(U> =2 E SpqabcdHl A dHT®

I,Jl ..... JTEI1 (047/3:’7)60(@7570)
Hq,..., H,.€Iy
h k
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Proof. Using the definitions of D" , of A"

elements, we have

of 92 """ t]; and of the action of Ly on the latter

a—b’ a—br YV V1,

E1yeeny ty o
E €QuTpOig Ay -+ dy, @O 15 5 (v) = =2 E € pqabelr, - - - dg, ®

77777

I7J1 ..... JT- (a7ﬁ77)ec(avb7c)
Hy,..., H,.el
t1,..5th t1,.th t1,..5tn
<(xp87'911 ----- Iy,aB,Hi,..., 7» z :Ap%’veh ----- I,apB,Hi,... 1- +§ :D’Y%peh ----- Iy,apB,Hi,..., H’r'(/U)

from which the thesis follows. O

We are now ready to state the following characterization result.

Theorem 9.2. Let p: M (V) — M (W) be a linear map of degree 2 associated to

5
o = Z wLJ®917J+ZBt®9t
t=1

(I,J)EZQ/BQ

such that x.® = 0 for all x € Ly. Then ¢ is a morphism of Verma modules if and only if for
all K € Z; and all v € V' we have

1
Xiwem@? )+ 5 D0 (= (@003) assc) () + 20,0, (0upc (1)) = 0
(aBvy)eC(a,b,c)

Proof. By Proposition 3.4 we have that ¢ is a morphism of Verma modules if and only if

xde< Z wr.y @ 0r.5(v) + Z@t ® 9%})) =0

(I,J)EIQ/BQ

for all v € V. It is convenient for us to consider the first sum running over all (1, J) € Z, and
so we have

37de< ZWIJ®91J +Zat®6t )

IJ €Zs

2) = ,dg (é S (didy — 151 0 ,) ®055(v) + Z 0, ® 0 (v )

1,J

We split Equation (2) into three parts:
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In the first part of Equation (2) we have, using Lemma 9.1,

l‘de Z d[dj & 9[7J(U) = Z <€Q’]($patQJ)d(] — 5Q7Jd](xpat@])> X QI’J(U>
1,J 1,J

=2 Z dH & Epqabe Z eaﬁ,H(xpa'V'U)
H

afy

-2 Z dr @ Epgabe Z(Ql,aﬂ(xpav-v) - D#—mel,aﬁ@))
I

aBy

1
—4 Z dy @ €pgabe Z (Gag,H(xpay.v) - 5(1},87.9&5,;1)(@))
H

afy

— 13 i @ e 3 (10 (Bu (v)) — %(xpaw.eaw)@))

afy

where the sums run over I, J, H € Z; and («, 8,7) € C(a, b, c).
In the second part of Equation (2) we have

1
Z 581”}8“"] X 9[»](1)) = 0

1,0

since the term indexed by (/,J) cancels the term indexed by (J, ).
In the third part of Equation (2) we have:

> 2ydod, @ 0'(v) = —dg @ 0°(v).
t
Putting the three parts together Equation (2) becomes

roll 5 s+ 500

I1,JeT; t
» 1
= Z dx ® < — X(xeB @) (V) + Epgabe Z D) (xpa'y-‘gaﬁyK) (v) + xpav-@&ﬁk(“)))
KeI, /By (aBy)eC(a,b,c)
and the result follows. O

We deduce that Conjecture 7.3 holds for morphisms of degree 2 and in particular we have
the following duality result for degree 2 morphisms.

Corollary 9.3. Let ¢ : M(V) — M(W) be a morphism of Verma modules of degree 2

associated to
¢ = Z WI,J®6)I,J+Zat®9t.
t

(I,J)EZ>/ B2
Then the linear map ¥ : M(W*) — M(V*) associated to

U = Z QJLJ@Q;J‘ant@(_Qt)*
t

(I,J)EZ2/B>

s also a morphism of Verma modules.

Proof. This is an immediate consequence of Remark 7.2 and Theorem 9.2. OJ
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Corollary 9.4. Let ¢ : M(\) — M(u) be a morphism of Verma modules and s € F(\) a
highest weight vector. Then for all K € I, we have

2kemaimaet(s)+ Y (1 (50, 005.0)(5) + 20550 (Bask (5)) ) = 0
(eBy)€C (abe)
Proof. This result immediately follows from Theorem 9.2 by observing that if p < v then
2p0y.5 = 0. O

In the following results we fix a morphism ¢ : M(X) — M (p) of Verma modules of degree
2 associated to ® = > w;; ®0;; + >0 ® 0" and we exploit Corollary 9.4 to obtain some
constraints on the weights A and p. The next result is analogous to Proposition 8.3.

Proposition 9.5. Let h,k,l,m € [5] be such that Opgim has the leading weight of ¢. Let
1 <i<j <5 besuch that j # h,k,l,m and i # h,k. Then
Hij = —Xi<h<j = Xi<k<j-
Proof. By Corollary 9.4 used with a =4, b=h, c =k, p=j and K = (I, m), observing that
2;05.008,x = 0 for all (o, 5,7) € C(, h, k), we obtain the following relation
205 (Onk,im () + Xn<jTjOn-(Okiim(5)) + Xn<jTOk-(Oinpi(s)) = 0.
Applying z;0; to this equation we have

hij-(Onkim (5)) + Xnej (i (Oriim (5)) = 2;0h.(Orjim(s)))
+ Xk<j (xiak-(gih,lm(s)) - $jak-(‘9jh,lm(5))) =0
Since Opk, im has the leading weight of ¢, if h < j we necessarily have 6y, (s) = 0, by Corollary
6.3. Similarly, if & < j, we have 8}, ;,,(s) = 0. Therefore the previous equation becomes
Pij-(Onk,im () + Xn<jTiOh-(Okiim(8)) + Xb<jTiOk-(Oinim(s)) =0

Again, if i > h, we have Oy; 1, (s) = 0 and otherwise we have z;0h.(0kiim(S)) = —Oknim(s) and
similarly for the other term, and so we have

Rij (Onkeim (8)) — XnejXi<hOkhim(S) — Xk<jXi<kOkhim(s) =0
i.e.,
hij-(Oniim(5)) = —(Xichej + Xickej)Oniim(5)-
O

Proposition 9.6. Let i, h, k,l,m € [5], with i, h, k,m distinct and i < m, be such that Opy im
has the leading weight of . Then

Rim,-(Ongeim (8)) =
1 o
<§ — Xi<h<m — Xi<k<m> Onkeim (S) — Eminkid’ (s) — 5 ((—1)X”‘<m9hz,km(8) + (_1)Xk<m9hm,kl)-

Proof. We consider Corollary 9.4 with a = h, b = k, ¢ =i, p = m and K = (I,m). We
observe that

Epgabe XKeB1Q = EmqhkiXl=q — Emlhki
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and so we obtain
1
Eminkid™ (s) + 3 ((_1)Xh<m0ki,hl(3) + (—=1)*<m 0, 14 (s) — 9hk,il<5)>

+ Xnem@mOh-(Okiim(8)) + Xecm@mOk-(Ginim(8)) + m0;.(Onkim(s)) = 0
We apply x;0,, to this equation and we obtain

) 1
Eminkil'(s) — 3 <<_1)Xh<m9km,hl(5> + (=) <m0 1 (s) + Qhk,ml(5)>
— XichemBrnim(5) — XickemOrh,im(S) + Nim-(Onkim(s)) =0
and the result follows. O

Proposition 9.7. Let h,k,m,i € [5] be distinct, i < m, be such that Opy pm has the leading
weight of ¢ : M(X\) — M(u). Then

Him = Xk<m — Xi<h<m — Xi<k<m
and

)\i,m = Xk<m — Xi<h<m — Xi<k<m — L.

Proof. We use Proposition 9.6 with [ = h and deduce

1 1
Rim-(Onk hm (8)) = <§ — Xi<h<m — Xi<k<m> Onke,hm (8) — 5(_1>Xk<m9hm,kh

1 1
= <§ — 5(—1)”“’” — Xi<h<m — Xi<k<m> Ok (S)

= (Xk<m — Xi<h<m — Xi<k<m> Onk,him (S)-
and the first part of the statement follows. The second part is an easy consequence since
X (Onk.pm) = 1.
O

Theorem 9.8. Let p : M(\) — M(u) be a morphism of degree 2. Then one of the following
occurs:

(1) A=(1,0,0,n), u=(0,0,1,n+ 1) for somen >0 and, up to a scalar, p = VcVp;
(2) A=(n+1,1,0,0), p = (n,0,0,1) for some n >0 and, up to a scalar, ¢ = VBV 4;
(3) A=1(0,1,0,0), u = (0,0,1,0), and, up to a scalar, ¢ = V'V 4.

Proof. We first make the following observation that will allow us to simplify several arguments.
If v € A is any weight, by Corollary 9.3, if the statement holds for all morphisms of leading
weight v then it holds also for all morphisms of leading weight —v*.

We let s be a highest weight vector of F(\) and we suppose that O, has the leading
weight of ¢. Let us first assume |{h, k,l,m}| = 3 i.e., without loss of generality, h = .

By Corollary 9.4 with K = (p,a) we have:

—((=1)%=r + (=1)X<")bup ca(s)
(3) +2Xa<pTpOa-(Ovepa(5)) + 2Xb<pTpOh-(Ocapa(s)) + 2Xe<pTpOe-(Oappa(s)) = 0.
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Using this equation with a = h, b = k, ¢ = m, since O, has the leading weight of ¢, we
immediately obtain

((=1)*<r + (=1)*"<*)Opg pm(s) = 0.

In particular, if we can choose p such that p > k,m or p < k,m we have Oy pm(s) = 0, a
contradiction. So we reduce to study the following cases: (a) k =1,m =5; (b) k =2,m =
5h=1;(c) k=1,m=4h=>5.

(a) By duality, since A(f2125) = —(A(fa1,45))", it is enough to consider only the cases
h = 2,3; we have, by Proposition 9.5,

f14 = —Xi<h<d — X1<5<d = —1,

a contradiction.
(b) In this case we have, by Proposition 9.5

H23 = —X2<1<3 — X2<5<3 = 0

and by Proposition 9.7 we have

H35 = X2<5 — X3<1<5 — X3<2<5 = L.

Since the leading weight of ¢ is A(f1215) = (—1,—1,0,1) we conclude that p =
(n,0,0,1) for some n >0 and so A = (n+1,1,0,0). The leading term of the singular
vector p(1®s) is wia 15 ®012.15(s) = diadi5 ®612.15(s) hence, up to a scalar, p = VVy
by Proposition 3.8.

(c) Since A(03151) = —A(b12,15)" this follows from case (b) and we obtain in this case the
morphism VoVp.

This concludes the study of all possible 04 1, having the leading weight of ¢ with i, k, [, m
not distinct.

In order to deal with the case where h, k, [, m are distinct we let p be different from h, k, [, m.
If p = 4,5 we apply Proposition 9.5 with ¢« = 1 and j = p and we get that p;, < 0 hence
Onk.im does not have the leading weight of ¢. By Corollary 9.4 we also have 67(s) = 0 and so
also 6P can not have the leading weight of .

For p = 1 we have A\(0') = —\(#°)* and if p = 2 we have \(6?) = —\(6*)* and so these
cases follows from the previous discussion by Corollary 9.3.

For p = 3 Proposition 9.5 with ¢ = 1, 7 = 3 shows that 601425 and 0,594 cannot have the
leading weight of ¢, i.e. 61425(s) = 61524(s) = 0, and that if 0545 has leading weight then
w13 = 0. Besides, by Corollary 9.4, 01545(s) = 26°(s). By Proposition 9.6 we immediately
get

hss. (912,45 (8)) = 4912,45(3)

and so 35 = 1. Since the leading weight is A(612,45) = (0, —1,1,0) we conclude that u =
(0,0,1,0) and so A = (0,1,0,0). The leading term of (1 ® s) is

wi2,45 @ Or12,45(s) + 03 ® 0°(s) = diadss ® 6°(s)

hence, up to a scalar, p = VoV 4 by Proposition 3.8.
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10. MORPHISMS OF DEGREE 3

This section is dedicated to the study of morphisms of Verma modules of degree three. We
consider a linear map ¢ : M(\) — M(u) of degree three associated to

Z w1®01+ Z 8tw1®0§.

1€73/Bs3 te[5],1€Z, /By

As in the case of morphisms of degree one and two, our goal is to establish necessary and
sufficient conditions to ensure that ¢ is a morphism of Verma modules.

Lemma 10.1. If z.& = 0 for every x € Ly, then the following relation holds for every
ve F(A\):

Zuq@@[ Zd;@@;

JASYE Ies

Proof. Indeed we have

D wr®@6i(v) =Y dr@6;(v)

1€T3 1e1s
1 1
+ E , 611 IQatll Iy dls + 2511 ISatII dr, — 5512,138t12,13 dh) ® 911,12,13 (U)
02,13
and the last sum vanishes since the coefficients of 8y, 5, 1, (v) and 6y, 1, 1, (v) coincide. O

Theorem 10.2. Let us assume that .® = 0 for every x € Ly. Then o is a morphism of
Verma modules if and only if for every H, L € I, every permutation (p,q,a,b,c) of [5] and
every v € F(\), the following equations hold:

(4)

1
Xeem@fh(0) 4 Separe D (= (@0 Bapns) (0) + 20,0, (Bup(v)) = 0
(a,8,7)€C(ab,c)
(5)

1 1 1 " u
Z‘gab,bC,Cq(U) + Zeaacb,bq(v) + §5pqabc Z ( - (ajp&,ﬂaﬁ)(v) + pra’)“(eaﬁ(v))) =0
(a,8,7)€C(a,b,c)
(6)

Z TpOy-(Uos(v)) =0

(a?/87’y)ec(a7b7c)

(7) ,
Cpaate Y Tp0y-(0a5(0) = SOubeca(v) = 0.

(a’/B?’y)GC(G'?b)C)
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Proof. By Proposition 3.4 we need to compute x,dg®(v) for v € F()\). We compute the
different summands separately. Using Lemma 10.1 and Lemma 9.1 we have

1
Tpdg Z wr gk @075k (0) = _8 Z wr gk @017k v)
(I,J,K)EIg/B3 K
1
= 4—8$de Z d[deK X 9]“],]{(1))
I,JK
1
= 4_8 (e’iQ,[l'patQJdeK — d[gQ,J :cpatQ”,dK + dIngQ,prﬁtQ’K) (024 6[7J’K<'U)
1,J K
1
= Z dpdr ® 2€pabe Z (D?yﬁp‘gaﬂ,H,L(U) + 2D Oap.i.0(v) + 32,05 (fup., L(v))>,
H,L afBy

where the sums run over I, J, K € Z; and («, 3,7) € C(a,b,c).
Recalling that dyd;, = wg,1, + %€H7L8tH,L we have:

Tpdg Z wr,x ®0r.5x(v)

(I,J,K)EIg/Bg
1
= @ Z wH,L ® 2€pqabc Z (D?y_)peaﬁ,H,L(v) + 2D§y_>p9a18,H7L(fU) + 3$p8'y-(0a,8,H,L(v)))
H,L afy

1
+ 18 Z Otyr, @ €H,LEpqabe Z (Dz/_)peaﬁ,H,L(U) + 2D§_>p9aﬁ,H,L(U) + 3$p37-(9a5,H,L(U))>
H.L

apy

= — Z WH,L X 25pqabc Z (12D3/*)p00(5,H,L(/U) + 12D§/*)p00t5,H7L(/U) + 241‘;,87.(9&57[{,[,(1})))

(H,L)EIQ/BQ oz,B’y

+ = Z atH,L ® €H,LEpqabe Z < - 4D§/_>p9a6,H,L(U) + 4Dr?;_>p9aﬁ,H,L(’U)>
(H,L)EIQ/BQ aﬁ'y

1
= Z WH,L & §5pqabc Z ( — (@p0y bap,m,) (v) + 2xpaw-(9aB,H,L(U))>

(H,L)EZ>/B2 aBy

1
+ 861 ® _éeabvbcvm + Z 0a ® aﬁ B, ’WZ( ) + Qa%%@ﬂq(v))'
aBy
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We also need the following computation

$deZ Z (‘3th®93 = ——Zde[(X)@p Zat$deZd[®9t

t€[5} 1621/31 1€,
Ll ) + 00 0 00
apy
1
:—Z WIQ__ngth] ®‘9 +Zat®5pqabczxp
afy
= Z (WLQ@e?( ) 81?@1 ® €Q19p +Zat®€pqabcz$p
I€eT, /B afy

Now we can use these two relations and compute

l‘deCI)(’U) = Ide< Z Wr,J K X 9[7J7K(U) + Z Z 6tw1 X 93(’0))

(I,J,K)€Z3/Bs3 te[5] I€Z1 /By
1
= Z wr,L @ 5 Epaabe Z ( — (#p0y-0ap,m..)(v) + 2$p37'(9aﬂ,H,L(U))>
(H,L)EL2/ B2 aBy
1
+ 0, @ =5 0upeca) + D O ® (Ou 570 (V) + Oaerr 0 ()
By
1
+ Z (w17Q®9]IO( atQ1(® EQlep +Zat®€pqabczxp
I€T, /By afy
1
= > wnr® (Xeeniol () + fpgare Y (- 5 (@0 ap 1) (v) + 0y (Bap L (v)))
(H,L)EL>/Ba aBy
1
+ Op @ Epgabe Z 20y (05(v)) + 0y ® (Epgate Z 20y (055(v)) — 29ab,bc,ca (v))
afy aBy
1 1
+ Z 0o @ ( a,Brq(V) + Zea%vﬁﬂq(v) + 6pqalw( - 5827@) + 20, (05,(v))

afy

+ 20 (05,(0) + 20005 () ).

This completes the proof of Equations (4), (6) and (7). In order to deduce Equation (5) we
consider the coefficient of 0, in the previous equation (the coefficients of 9, and 0. provide



27

equivalent conditions) and we have

1 1 1
_eab,bc,cq(v) + Zeacycb,bq(v) + 5pqab0( - 5950(1)) + xpac'(ggb@)) + xpab.(ﬁga(v)) + $paa-(9gc(v)))

4
1 1 1 u u u
= Zeab,bc,cq(v) + Zeac,cb,bq(v) + €pqalw< - 5((1:[,(%.91,0) (v) + (xpab-eca)(v) + (xpacﬂab) (U))

D0 (02(0) + @,00-(02,(0) + 2,0, (05(0)))

1 1 1 . .
= Zeab,bacq(“) + Zeaqcb,bq("]) + §5pqabc Z ( - (wpaw-ea,ﬂ)(v) + 2561787-(‘9@5(“)))-

aBy

]
Corollary 10.3. Let ¢ : M(\) — M(u) be a morphism of Verma modules of degree 3

associated to
Z w1®01+z Z ath®9§.

I€Z3/B3 telb) I€Z1 /B
Then the linear map ¢ - M (u*) — M(X*) associated to
Z w1®9f+z Z 8,50)[@ -
I€Z3/Bs te[d5] I€Z1 /B

s also a morphism of Verma modules.
Proof. This is an immediate consequence of Remark 7.2 and Theorem 10.2. 0

If we consider Equation (4) on a highest weight vector s € F(A) (and we multiply it by
2€pqabe) We obtain the following equation:

(8)  2epganexren@fi(s) + > (1) (p05-0051.L) (5) + 2Xp>yp0s- (s 1,L(5))) = 0.
aBy

Remark 10.4. If 2,0..04 1,1, has the leading weight of ¢ then X~ 2,05.(0ap .r(s)) = 0 for
all (o, 8,7) € C(a,b,c) and so we obtain the following
(9) 2€pqabeX LBl (s) + Z 2> (2p0y bap,m,L)(5) = 0.
aBy
This equation has several immediate consequences.
Lemma 10.5. If a,b,c,d € [5] are distinct then Oupacaqa does not have the leading weight of
©.

Proof. Without loss of generality we can assume that the fifth element p is either bigger than
both b and ¢ or smaller than both b and ¢. Otherwise we can rename b, ¢, d accordingly.
Remark 10.4 applies with H = (a,p), ¢ = d and L = (a,d) so we have

(_1)Xp>ceab,ac,ad(3) + (_1)Xp>b6ab,ac,ad(5) =0.
[

Lemma 10.6. If a,b,c € [5] are distinct then Oup peco does not have the leading weight of .
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Proof. Without loss of generality we can choose p such that p is either bigger than both a
and ¢ or smaller than both a and ¢. Remark 10.4 applies with H = (b,p) and L = (¢, a) so
we have

<_1)Xp>ceab7bc,ca(s) + (_1)Xp>a9ab,bc,ca(5) = 0.
O

Lemma 10.7. If z,y,z,w € [5] are distinct and 0,y .y zw has the leading weight of ¢, then
Oy 2w,0w = O12,45 1 for some k,1 € {1,2,4,5}.

Proof. Let us first assume that {z,y,z,w} # {1,2,4,5}. This assumption ensures that we
can assume that the fifth element p is either bigger or smaller than both y and w (otherwise
exchange the roles of z,z and y,w). Use Remark 10.4 with a = z, b =y, ¢ = w, q¢ = z,
H = (z,p), L = (z,w). Then we have:
(=120, w2 (8) + (= 1) Oy 2 20 (8) = 0.

Now let {x,y, z,w} = {1,2,4,5}. If either {y,w} = {1,2} or {y,w} = {4,5} then we can use
the same argument as above.

Now let {y,2} = {4,5} so that 6,12 has the leading weight of . Equation (8) with
a=1,b=2g=3,c=yp==z2, H=(2,p) and L = (1,2) gives

2,09.(01y.2:12(5)) =0

hence if we apply 220, we get ho,.(01,2.12(s)) = 0 which implies in particular that psq = 0.
Since A3q(61y2.,12) = 1 this contradicts the dominance of A\. The thesis follows. O

Lemma 10.8. The elements 0124514, 0124525 and 0124524 do not have the leading weight of
©.

Proof. Use Equation (8) witha=1b=2c=4,g=3and p=>5, H=(4,5) and L = (1,2).
We obtain

(10) 024.41.12(8) + 041.42.12(8) + 22501 .(024,45.12(5)) + 22505.(041 4512(5)) = 0.

Assume 694514 has the leading weight of ¢. Then 6544512(s) = 0 and we apply 2205 to
Equation (10) to obtain
—954,41,12(8) - €24,41,15(8) - Q41,45,12(S) - 941,42,15(8) + 2h25~(941,45,12(8)) = 0.

But by Lemma 10.7 we have 64 41 15(s) = 0 and so we have

—2941,45,12(5) + 2h25-(941,45,12(5)) = 0.

It follows that )\25(941745712(8)) =1 and so )\34(041745712<S)) S 1 and, since )\34(941745712) = 2 this
would imply Az4(s) < —1, a contradiction.
By Corollary 10.3 the element 60} 45 25 does not have the leading weight of ¢ since A(612,45.25) =

—A(O12,45,14)"
Now we assume that 05 4524 has the leading weight of p. We apply x105 to Equation (10)
to obtain

—924,45,12(8) - 924,41,52(8) - 945,42,12 - 341,42,52 + 2h15.(924,45,12(8)) + 2$132~(941,45,12(S)) =0.

Lemma 10.7 ensures 6a4 41 52(5) = 0 and so we obtain
—2924,45,12(3) + 2h15-(924,45,12(5) - 2942,45,12(8) =0
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and we conclude
h15-(924,45,12(3)) = 0.

We obtain a contradiction with the same argument used in the other case.
O

Lemma 10.9. Assume that 0121545 has the leading weight of . Then A = (1,1,0,0), p =
(0,0,1,1) and ¢ = VVEVa (up to a scalar).
Proof. Use Equation (8) witha=1,b=2,¢=4,q=3,p=>5, H=(1,5) and L = (4,5).
We obtain

612,14,45(5) + 024,15,41(5) + Oa1,12,45(5) + O41,15.42(5) + 22504.(012,15,45(5)) = 0
since 924’14’45<8) = 941715745<S) =0. Applylﬂg $485 we get

—912,15,45(8) - 925,15,41(5) - 951,12,45(8) - 941,15,52(5) + 2h45.(912,15,45(8)) =0.

By Lemma 10.7 we have 65 15 41(s) = 0 and so we obtain

—2012,15,45(5) + 2hu5.(012,15,45(5)) = 0
and so

/\45(912,15,45(8)) =1
Now we consider Equation (8) witha =1,b=3,¢c=5,q=2,p=4, H=(1,2) and
L = (4,5). We obtain
O55.12,15(8) + 051,12.35(5) + 22405.(051,12,45(s)) = 0.
Applying x30, to this equation we have

—945,12,15(5) - 951,12,45(5) + 2h34~(951,12,45(3)) =0
and from this we get >\34(912’15745(5>> =1.
Finally, we use again Equation (8) witha =1,b=4,¢c=5,¢=2,p =3, H = (1,2),
L= (]_, 5) which gives 2[E381.(045’12715(8)) = 0, hence
)\13(912,15,45(3)) =0

proving that p = (0,0,1,1). It follows that A = (1,1,0,0) since A(6h21545) = (—1,—1,1,1).
By Remark 10.4 we have —263.(s) — 012.1545(s) = 0 hence the leading term of the singular

vector (1 ® s) IS wig 15,45 @ O12,15,45(8) + O3dis @ 035(s) = diadisdas ® 121545(s). It follows

that ¢ = VoV V4 due to Proposition 3.8. O

In the next result, for notational convenience, for all a,b € [5] we let (—1)¢<t = (—1)Xa<s,

Proposition 10.10. Let {z,y,z,w,t} = [5] and let s be a highest weight vector in F(\).
Assume that 0y 5. has the leading weight of ¢. Then the following equations hold:

(11) _25xyzwt0§c/y(5) + (_1)y<tezz,xt,yw(s> + (_1)y<t9:rz,zy,tw(3) + (_1)y<z‘9xz,xt,yw(s)
+ (_1)y<zezy,mt7zw(3) + (_1)y<m91y,mw,zt(5) =0

(12)  2emeuwtf, () + (= 1) Oow = (5) + (= 1) Oru ayi2(5) + (= 1) ot 2 (5)
+ (_1)y<w€wy,xt,w2(3) + (_1)y<xeﬂcy,wz7wt(3) =0
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(13)  —=2e0yzwi02,(5) + (1) 0 224t (5) + (= 1) Oru 2y 26 (5) + (= 1) O 22 41(5)
+ <_1)y<w9wy,wz,wt<s) + <_1)y<$9my7:vt,w2(3) =0

(14)  2e0peutfi.(8) + (= 1) Ouyarzw(8) + (1) Oy a2 (8) + (=1)" Y00yt 20 (5)
+ (_1)Z<y9$z,wt,yw(3) + (_1>Z<$9zz,ww,yt(3) =0

(15)  —2e4ymub;,(s) + <_1)Z<t9:cw,xt,zy(5) + (_1>Z<t9xw,xz,ty(3) + (_1)Z<w9:6w,xt7zy(3)
+ (_1>Z<w‘9mz,xt,wy(8> + (_1)Z<xgzz,xy,wt(8) =0

(16)  2e0peutt;.(8) + (= 1) 0rway,ze(8) + (= 1) 0wazt(8) + (= 1) Oz, 4(5)
+ (_1)Z<w0zz,my,wt(s) + (_1)z<z9xz,act,wy<8) =0

(A7) 2eayeunli(s) + (1) buzay(5) + (=1) b0z a0 (5) + (=1)" Oz 0,100 (5)
+ (= 1) Ootayzw(s) + (1) Oaraw,zy(s) =0

(18) _25xyzwt0§ct(3) + (_1)t<w0xz7:vw,ty(3) + (_1)t<w0mz,wt,wy(3) + (_1)t<zewz,ww7ty(3)
+ (_1)t<Z9zt,xw,zy(3) + (_1)t<w9xt,xy,zw(s) =0

(19)  2e0peutbn(s) + (1) Ooyzwe(s) + (1) Ouyatas(s) + (1) 0ay 0wz (s)
+ (=1 otawy=(s) + (1) Oarazguls) =0

(20)  —2e0yzunli,(8) + (= 1) ayarw=(s) + (1) Oryaw=(s) + (1) bayarwz(s)
+ (1) Oaw,zt.y=(5) + (=1)" o azye(s) = 0

(21) 2€ 22wty (8) + (_1)w<t9xz,xt,wy(3) + (_1>w<t0wz,xw,ty(5) + (_1)w<20m,xt7wy(3)
+ (_1)w<zezw,xt,2y(5) + (_1>w<xezw,zy,zt(5) =0

(22)  —2eupeutfp,(8) + (= 1) 0nzayue(8) + (= 1) 00z zwye(8) + (—1)" Oz a0t (5)
+ (_1)w<zexw,a:y,zt<5) + <_1)w<$9xw,xt,zy(s) =0

Proof. We use Remark 10.4 twelve times with L = @ = (p, q) any ordered pair in {y, z,w,t}
and H = (z,p) to obtain the stated equations. More precisely we get Equation (11) with
p =y, ¢ = w; Equation (12) with p = y, ¢ = z; Equation (13) with p = y, ¢ = ¢; Equation
(14) with p = 2z, ¢ = w; Equation (15) with p = z, ¢ = y; Equation (16) with p = z, ¢ = ;
Equation (17) with p = ¢, ¢ = w; Equation (18) with p =t, ¢ = y; Equation (19) with p = ¢,
q = z; Equation (20) with p = w, ¢ = z; Equation (21) with p = w, ¢ = y; Equation (22)
with p =w, ¢ =1t. O

Proposition 10.10 provides 12 linear equations in the ten unknown 0.y ...t (s) = fut,
gxy,xw,zt(s) - fzt; eccy,xt,zw(s) - fzun eacz,a:w,yt(s) - fyta gxz,xt,yw(s) = fywa wa,xt,yz(s) = fyza
Eayzwt0dy (8) = by, Eoyzutli.(8) = bz, Coyrutlin,(5) = bu, Eayzuntl;(s) = b We are now inter-
ested in the study of the weights X; ;(0zy 22wt (5))-
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Proposition 10.11. Let {p,q,a,b,c} = [5] with ¢ < p, let s be a highest weight vector in
F(\), H,L € 7, and assume that O, g 1 has the leading weight of ¢. Then we have

2hep.(Baprr(s)) =
— 26pgabeX1eB1Q(Tc0p-05) (5) + (20p (4p0cban i) (5) + (1)< (2 0p. (2p0b-bca,11,L) ) (5)
+ (= 1)< (20p (00 -bpe,11,1.) ) (8) — 2Xectap(TeO-Oca,i1,1)(8) — 2Xe<acp(TeOa-Ope, L) (S)
Proof. Equation (8) is equivalent to the following
2t X2 5r@B () — (20O 1.0)(5) + (—1)5 (200 Ban1.)(5) + (—1)7* (2D Bper.1) ()
+ 22,00 (Oab,1,1.(5)) + 2Xp>62p0b-(Oca, 11,..(5)) + 2Xp>aZpOa-(Ope,,1.(s)) = 0.
We apply z.0, to this equation and we obtain
2€pgabeX 1 B1QTc0p-(077(8)) — (20p-(2p0c-Oab,r,1.)) () + (1) (20p- (2p0-Oca,r,1.)) (8)
+ (=1)>(2.0p.(2p00-Obc,11,1.) ) () + 2hep.(Bap 11,1 (5)) + 2Xebep(cOp.Oca,m,1.) (S)
+ 2Xe<ca<p(e0q.Ope, 1) (s) = 0.
The result follows. O

Corollary 10.12. Let {z,y, z,w,t} = [5] and assume that 0,y ;. has the leading weight of
@. Then we have

if z < w,
(23> thw'fwt = 2(bw - bz) + fzt + fwt + (_1)Xw<z<fyw + fyz) - 2Xz<x<wfwt;
ify <z,
(24) 2hyz-fwt = Q(by - bz) + (_1>Xt<z(_fzw - fyw) + (_1)Xw<z(fzt + fyt)
- 2Xy<t<z(fwt + fyw) - 2Xy<w<z<fwt - fyt)
if w <t,
(25) Zhwt-fwt = (_1)Xy<t<fyw + fyt) + (_1>Xz<t<fyt + fyw)
- 2Xw<y<t(fwt - fyt) - 2Xw<a:<t(fwt - fyw)-
if w < z,
(26)

2hwz~fwt = fwt + fzt + (_1)Xz<y(fwt + fzt) _l' 2Xw<y<z(_fwt + fyt) _l' 2Xw<x<z(_fwt + fyw)
ifx <y,
(27) thy-fwt = ((_1)Xy<t + (_1)Xy<w)(_fyw + fyt + fyZ)
- 2Xa:<t<y(fwt + fyt - fzt) - 2Xa:<w<y(fwt + fyw - fyz)

Proof. The statement follows from Proposition 10.11 with the following choices:

c=y,p=z,a=w, b=t q=x, H=(z,y), L= (z,2).
c=w,p=tia=x,b=y,q=2z2 H=(x,2), L =(w,1).
c=w,p=z,a=xz,b=y,q=1t, H=(x,2), L =(w,1).
c=x,p=y,a=wb=t q==z H=(z,y), L= (z,2).
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Proposition 10.13. Let s be a highest weight vector in F(X). For ¢ < p we have

4h6p'(egb(5>> = (_4Xc<b<p - 4X6<a<p> Zb(s) + (2 - 4Xc<a)el§c(3) + (_2 + 4Xp<a)‘9]bgp<3)
+ 5pqab0(9ab,bp,cq(5> + Oabpepg(s) + Oap.evpg(s) + eac,phbq(S))
Proof. We start from Equation (5):
(28)
Oab be.ca(5) + Oac.cb b (5) + Epgabe ( — 204,(5) + 42,00 (05, () + 42,05 (024 (5)) + 470003 (s))) = 0.

We want to apply z.0, to this equation and so we do the following two preliminary calcula-
tions:

TOp-(2p0s.(024(5))) = Xe<vTeDyp-(2p0b-(0c4(5)))
= Xe<tTeOb-(024(5)) + XeavTpOy-(2c0p.(054(5)))
—Xe<t0pa (8) — Xe<vTpOp- (9 2(5))
= Xc<b0ab( ) + Xe<bXp<tFha(S)
= Xe<b(1 = Xp<n)Oas(s)
= Xe<b<plap(s)

20y (2p0a-(04e(5))) = Xe<a®eOp-(2p0a-(05(5)))
= Xe<a®eOa-(05(5)) + Xe<a®pOa-(20p. (0(5)))
= Xe<a(Ope(s) — Op,(s)) — XC<a'rPaa'(9l()lp( s))
= Xe<alpe(5) + Xe<alay(s) — Xc<aXp<a(0bp(3) — 0pa(8))
= Xe<alpe(s) — Xp<a95p(3> + Xe<a<pllas(5)

Therefore, if we apply z.0, to Equation (28), using the previous computations, we obtain

~Oabbp.eq(5) = Oabbepg(5) = Oap,eb,bg(8) — Oacpbpg(S) + ‘gpqabC( — 20;.(s) + 205;)(5)
+ 4hep(054(8)) + dxecbaplan(s) + 4Xe<alpe(s) — dXp<ally,(s) + AXc<cacpliy(s)) =0
hence we get the statement. 0

Proposition 10.14. Let {h,k,1,m,n} = [5]. Then Onprmn and 0%, do not have the leading
weight of .

Proof. We first assume h = 1 and we let x = 1, y = 2, 2 = 3, w = 4, t = 5. We use
notation introduced after the proof of Proposition 10.10 and we observe that, up to a sign,

91k,1l,mn(8) € {f23, foa, fo5, f3a, f35, f15} and elfk(5> € {ba, b3, by, bs}. We solve the linear system
provided by Proposition 10.10 and we have:

® fas = —fis=—fu
o for = —fo5 = —fo3
® 2by = —3f34 +2fo3
L] 2b3 = 2[?5 = 2b4 = —f34.



We use Proposition 10.13 with a =4, b=1, c =2, p =3, ¢ = 5 and we obtain
1 1 1
ha3.by 2552 — 553 + Z(f% + f35 + f31 + foa)
1 1 1
= Z(—3f34 +2fo3) + Zf34 + Z(f23 — faa + f31 — fa3)

= —%f:m + %fz:s

therefore
haos.fa4 = f3a — fos.

Now we use Equation (24):

2ho3. fas = 2(by — b3) — faa — foa + (f35 + fos)
i.e.

2ho3.f34 = —3f3a +2fo3 + faa — faa+ foz — faa + foz = —4fsa + 4 fo3
or
hos. f31 = —2f31 + 2 fos.

Comparing this with the previous equation we obtain f3;4 = fo3.
Now we use Equation (27):

2h1a. fas = 2 fos — 2fo5 — 2 fo3
i.e.
2hia.f34 = —2fo3 — 2fa3 — 2fo3 = =634
This implies that fz; = fo3 = 0. It follows that 015 17mn(s) = 0 and 6%, (s) = 0.
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Nowlet h=2and z=2,y=1, 2 =3, w=4,t=25. Similarly as above we have, up to a
sign, Oogo1,mn(8) € {f13, fia, f15, f34, [35, fas} and 05, (s) € {by, b3, by, b5}. We solve the linear

system provided by Proposition 10.10 and we have:

® f3s=—fi5=—fa
o fuu=—fis=—fi3
® 2by = —fau+2f13
L] 2b3 = 2b4 = 2b5 = —f34
We use Proposition 10.13 with a =4,b=2,c=1, p=>5, ¢ = 3 and we obtain:

1

1
his.b4 = §f34 + §f13

ie.,
his-faa = —faa — frs
Now we use Equations (23), (24), (25) and we obtain:
his.faa = 2f13 — faa
It follows that:
2f13— faa=—fsa— f13

i.e., fi3 =0, hence hys.f34 = — f34 which implies f3; = 0. It follows that 0o 21 mn(s) = 0 and
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Nowlet h=3andx=3,y=1, 2 =2, w=4,t=0>5. Similarly as above we have, up to a

sign, 93k,3l,mn(8) € {f12,f147f157f247f25>f45} and 9§k(s) € {51,52754755}- We solve the linear
system provided by Proposition 10.10 and we have:

b f15 = f24 = —f25 = —f14
o fis = —2by = —2b5s = —2f14 — f12
® 2b; = 2by = fio

We use Proposition 10.13 with a =2, 0 =3, c=1, p =5, ¢ = 4 and we obtain:

1 1
—hy5(by) = §f12 - §f14
ie.,

his(fi2) = fua — fi2
Now we use Equations (23), (24), (25) and we obtain:

his(f15) = 3 fia + fio-
It follows that: )
his.fia = —§h15-(f45 + fi12) = —2fu

hence fi4 = 0 and hys.f12 = — fi2 from which it follows that fi» = 0. We conclude that
O3k 31.mn(s) = 0 and 65, (s) = 0.
If h = 4,5 the result follows from Corollary 10.3. O

Now we can summarize the classification of morphisms of degree 3 in the next result.

Theorem 10.15. Let ¢ : M(\) — M(u) be a morphism of degree 3. Then A\ = (1,1,0,0),
w=10,0,1,1) and up to a scalar p = VcVpVe.

Proof. This follows from Lemmas 10.5, 10.6, 10.7, 10.8, 10.9 and Proposition 10.14. 0
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