We consider a variational problem related to the shape of charged liquid drops at equilibrium. We show that this problem never admits local minimizers with respect to L 1 perturbations preserving the volume. However, we prove that the ball is stable under small C1,1 perturbations when the charge is small enough.

Goldman M, Novaga M, Ruffini B (2015). Existence and stability for a non-local isoperimetric model of charged liquid drops. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 217, 1-36 [10.1007/s00205-014-0827-9].

Existence and stability for a non-local isoperimetric model of charged liquid drops

Ruffini B
2015

Abstract

We consider a variational problem related to the shape of charged liquid drops at equilibrium. We show that this problem never admits local minimizers with respect to L 1 perturbations preserving the volume. However, we prove that the ball is stable under small C1,1 perturbations when the charge is small enough.
2015
Goldman M, Novaga M, Ruffini B (2015). Existence and stability for a non-local isoperimetric model of charged liquid drops. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 217, 1-36 [10.1007/s00205-014-0827-9].
Goldman M; Novaga M; Ruffini B
File in questo prodotto:
File Dimensione Formato  
gnr1.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/733167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact