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Existence and Stability for a Non-Local
Isoperimetric Model of Charged Liquid Drops

Michael Goldman, Matteo Novaga & Berardo Ruffini

Communicated by A. Braides

Abstract

We consider a variational problem related to the shape of charged liquid drops at
equilibrium.We show that this problem never admits local minimizers with respect
to L1 perturbations preserving the volume. However, we prove that the ball is stable
under small C1,1 perturbations when the charge is small enough.

1. Introduction

In this paper we study an isoperimetric variational problemwhere the perimeter,
which is local and attractive, competes with the Riesz potential energy, which is
non-local and repulsive. More precisely, we denote

Iα(E) := inf

{∫
Rd×Rd

dμ(x)dμ(y)

|x − y|α : μ(E) = 1

}
,

where α ∈ (0, d) and E is a compact subset of R
d and consider the functional

Fα,Q(E) := P(E) + Q2Iα(E) (1.1)

where Q > 0 is a parameter and where P(E) denotes the perimeter of E (which
corresponds toHd−1(∂E) if E has smooth boundary, see [4]). We are, in particular,
interested in the questions of the existence and characterization of stable sets under
volume preserving perturbations. It turns out that the answer to these questions
depends crucially on the regularity of the allowed perturbations. In fact, we prove
that on the one hand, there are no local (or global) minimizers of (1.1) under
volume constraint in the L1 or even Hausdorff topology. This implies that there
are no sets which are stable under such perturbations. On the other hand, we prove
that for small enough charge Q, the ball is stable under small C1,1 perturbations.
This comes as a by-product of the global minimality of such a ball in the class of
“regular enough” sets.
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1.1. Description of the Model

For α = d − 2, Iα(E) corresponds to the Coulombic interaction energy and
the functional (1.1) can be thought as modeling the equilibrium shape of a charged
droplet forwhich surface tension and electric forces compete. Such charged droplets
have received considerable attention since the seminal work of Lord Rayleigh [38]
and are by now widely used in applications such as electrospray ionization, fuel
injection and ink jet printing. Starting with the pioneering experiments of Zeleny
[42], the following scenario emerged. For small charge, a spheric drop remains
stable but when the charge overcomes a critical threshold Qc, which depends on
the volume of the drop and on the characteristic constants of the liquid (surface
tension and dielectric constant), a symmetry breaking occurs. Typically, the drop
deforms and quickly develops conical shaped singularities, ejecting a very thin
liquid jet [11,20,41].

This jet carries very little mass but a large portion of the charge. This type
of behavior has since been observed in more detail and in various experimental
setups (see for instance [3,16]). We place particular emphasis on [1,15], where the
disintegration of an evaporating drop is observed, since amodel very similar to (1.1)
has been proposed in [17,39] to explain these experiments. We should stress the
fact that the study of the unstable regime, which is still very poorly understood both
experimentally and mathematically (see for instance [20,22,36]), is far outside the
scope of this paper. We focus instead on the rather simple variational model (1.1)
which hopefully captures, at least for small charges, most of the characteristics
of the system. However, the unconditional (in term of Q) non-linear instability of
the ball that we obtain in contrast with numerical and experimental observations
indicates that something is still missing in this model. A challenging question is
identifying the relevant physical effect which stabilizes a charged drop.

In some applications such as electrowetting [37] it is more natural to impose
the electric potential V0 (see Definition 2.9) on the boundary of E rather than the
total charge Q. In that case the energy of a drop E takes the form

P(E) − V 2
0 C2(E), (1.2)

where for a set E ⊂ R
d with d ≥ 3,

C2(E) := min

{∫
Rd

|∇u|2 dx : u ∈ H1
0 (Rd), u ≥ 1 on E

}
,

is the capacitary functional. Notice that since Id−2(E) = C2(E)−1 for compact
sets (see Remark 2.5), the functionals (1.1) and (1.2) are qualitatively similar. The
analogy is in fact deeper since both functionals give rise to the same Euler-Lagrange
equation.

1.2. Main Results of the Paper

The first main result of the paper is that, when α ∈ (0, d − 1), for every given
charge and volume, quite surprisingly the functionalFα,Q has nominimizer among
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subsets ofRd of this given volume. Indeed, it ismore convenient to spread the excess
charge into little drops far away from each other. Such result is contained in the
following theorem:

Theorem 1.1. For every α ∈ (0, d − 1), there holds

inf|E |=m
Fα,Q(E) =

(
m

ωd

) d−1
d

P(B).

Ultimately, this comes from the fact that the perimeter is defined up to sets of
Lebesgue measure zero while the Riesz potential energy is defined up to sets of
zero capacity. This phenomenon is further illustratedwhen considering the problem
among sets which are contained in a fixed bounded domain�. In this case we prove
that the isoperimetric problem and the charge minimizing problem completely
decouple.

Theorem 1.2. Let � be a compact subset of R
d with smooth boundary, and let

0 < m < |�|. Let E0 be a solution of the constrained isoperimetric problem

min {P(E) : E ⊂ �, |E | = m} . (1.3)

Then, for α ∈ (0, d − 1) and Q > 0 we have

inf|E |=m, E⊂�
Fα,Q(E) = P(E0) + Q2Iα(�). (1.4)

As a by-product of our analysis we also get that Fα,Q does not have local
minimizers with respect to the L1 or even Hausdorff topology:

Theorem 1.3. For any α ∈ (0, d − 1) and Q > 0, the functional Fα,Q does not
admit local volume-constrained minimizers with respect to the L1 or the Hausdorff
topology.

Let us stress the fact that Theorem 1.3 asserts, in particular, that there is never non-
linear stability of the ball. However, we should also notice that the competitors that
we construct and which are made of infinitely small droplets, are very singular. It
would be interesting to better understand the mechanism preventing the formation
of such micro drops.

One possible explanation is that global (or even local) L1 minimizers are not
the right objects to consider. One should instead look for stable configurations
under smoother deformations. These are typically local minimizers for a stronger
topology. It is then reasonable to look for minimizers of Fα,Q in some smaller
class of sets with some extra regularity conditions. The class that we take into
consideration, and denote by Kδ , is that of sets which admit at every point of their
boundary an internal and an external tangent ball of a fixed radius δ (namely, the
δ-ball condition, see Definition 2.18). We denote by Kco

δ the class of connected
sets of Kδ . The purpose of introducing such a class is to prove the stability of the
ball with respect to C1,1 perturbations. There are indeed two main (mathematical)
advantages of working in Kδ . The first, is that it ensures density estimates on the
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sets. These estimates are usually the most basic regularity results available for
minimizers of minimal surfaces types of problems (see [26,27,30,33]). Thanks to
the constructions of Theorem 1.1, we see that in our problem there is no hope to
get such estimates without imposing them a priori. The second advantage is that,
at least in the Coulombic case α = d − 2, for every set E ∈ Kδ , the minimizing
measure forIα(E) is a uniformly boundedmeasure on ∂E (see the end of Section 2).
We use in a crucial way this L∞ control on the charge density in the analysis of the
stability of the ball. Our second main result is then:

Theorem 1.4. Let d ≥ 3 and α = d − 2. Then for any δ > 0 and m ≥ ωdδ
d , there

exists a charge Q̄
(

δ
m1/d

)
> 0, such that if

Q

m
d−1+α

2d

≤ Q̄

(
δ

m1/d

)

the ball is stable for problem (1.6) under volume preserving perturbations with
C1,1 norm less than δ.

This extends a previous result ofM.A. Fontelos andA. Friedman [20], which asserts
the stability with respect to C2,α perturbations. These authors also gave a detailed
analysis of the linear stability. We remark that our proof of the stability of the ball
is quite different from the one in [20], and is inspired by the proofs in [10,21,30].
In particular it lies between linear and non-linear stability since it follows from the
following three theorems asserting that for small charge Q, the ball is the unique
minimizer in the class Kδ .

The first result is an existence theorem in the class Kco
δ .

Theorem 1.5. For all Q ≥ 0 problem

min Fα,Q(E) : |E | = m, E ∈ Kco
δ , (1.5)

has a solution.

To avoid the strong hypothesis on the connectedness of the competitors, it is
necessary to impose a bound from above on the charge Q.

Theorem 1.6. There exists a constant Q0 = Q0(α, d) such that, for every δ > 0,
m ≥ ωdδ

d and

Q

m
d−1+α

2d

≤ Q0
δd

m
,

problem
min Fα,Q(E) : |E | = m, E ∈ Kδ , (1.6)

has a solution.

It is worth remarking that the main ingredient of the proof of Theorem 1.6 is the
isoperimetric inequality in quantitative form (see [9,19,23]). Finally, using delicate
estimates on the Riesz potential energy Iα(E) for small perturbations of the ball,
we are able to prove the following stability theorem in the Coulombic case.
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Theorem 1.7. Let d ≥ 3 and α = d − 2. Then for any δ > 0 and m ≥ ωdδ
d , there

exists a charge Q̄
(

δ
m1/d

)
> 0, such that if

Q

m
d−1+α

2d

≤ Q̄

(
δ

m1/d

)

the ball is the unique minimizer of problem (1.6).

It would be interesting to understand if our stability result could be extended both to
the case α �= d−2 and maybe more interestingly to a weaker class of perturbations
such as, for instance, small Lipschitz ones.

Let us point out that for α ≤ d − 2, the optimal measure for the Riesz potential
concentrates on the boundary of the sets whereas for α > d − 2 it has support on
the whole set (see Lemma 2.15). Therefore, for α > d − 2, it makes also sense to
consider the functional

Gα,Q(E) = P(E) + Q2Iα(∂E)

for which we can prove similar results to the ones described above.
Let us close this introduction by comparing our results with the analysis in [8,

10,28–30,33] of the non-local isoperimetric problem, known as the sharp interface
Ohta-Kawasaki model,

min|E |=m
P(E) +

∫
E×E

dx dy

|x − y|α , (1.7)

which is motivated by the theory of diblock copolymers and the stability of atomic
nuclei. The authors show that there exist two (possibly equal) critical volumes
0 < m1(α) ≤ m2(α) such that minimizers exist if m ≤ m1, while there are no
minimizers if m > m2. Moreover, the minimizers are balls when α < d − 1 and
the volume is sufficiently small. These results have been generalized to non-local
perimeters in [18] (see also [13]). A crucial difference between our model and
the Ohta-Kawasaki model is that in the latter, the non-local term is Lipschitz with
respect to the measure of the symmetric difference between sets (see for instance
[10, Prop. 2.1]). Hence, on small scales, the perimeter dominates the non-local part
of the energy. This implies in particular that minimizers enjoy the same regularity
properties as minimal surfaces. In our case, it is quite the contrary since on small
scales, the functional Iα dominates the perimeter. As already pointed out above, this
prevents a priori the hope of getting any regularity result for stable configurations.
Let us notice that the same type of existence/non-existence issues in variational
models where the perimeter competes against a non-local energy have recently
been addressed in other models. For instance, in [6] the authors study a model
related to epitaxial growth where the non-local part forces compactness whereas
the perimeter part favors spreading.

The paper is organized as follows. In Section 2 we recall and prove some
properties of the Riesz potentials Iα . In Section 3, we prove the non-existence of
minimizers for the functional Fα,Q (in particular we prove Theorems 1.1 and 1.3).
In Section 4, we study this existence issue, that is we prove Theorems 1.5 and
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1.6, before proving in Section 5 the stability of the ball (Theorem 1.7). Finally, in
Section 6, we extend our results to the logarithmic potential energy

Ilog(E) := inf

{∫
Rd×Rd

log

(
1

|x − y|
)
dμ(x)dμ(y) : μ(E) = 1

}
.

2. The Riesz Potential Energy

In this section we recall some results regarding the Riesz potential energy (see
Definition 2.1 below). Most of the material presented here comes from [31].

In the following, given an open set � ⊂ R
d , we denote byM(�) the set of all

Borel measures with support in �. For x ∈ R
d and r > 0 we denote by Br (x) the

open ball of radius r centered in x and simply by B the unit ball and by ωd = |B|
its Lebesgue measure. For k ∈ [0, d], we will denote by Hk the k-dimensional
Hausdorff measure.

Definition 2.1. Let d ≥ 2 and α > 0. Given μ, ν ∈ M(Rd), we define the
interaction energy (or potential energy) between μ and ν by

Iα(μ, ν) :=
∫
Rd×Rd

dμ(x) dν(y)

|x − y|α ∈ [0,+∞].

When μ = ν, we simply write Iα(μ) := Iα(μ,μ). When the measures
are absolutely continuous with respect to the Lebesgue measure, that is μ =
fHd E and ν = gHd E for some set E and functions f and g, we denote
Iα(μ, ν) = IE

α ( f, g) (and when f = g we denote it by IE
α ( f )). Similarly, when

μ = fHd−1 ∂E and ν = gHd−1 ∂E we write Iα(μ, ν) = I∂E
α ( f, g) (and

when f = g we denote it by I∂E
α ( f )).

The following proposition can be found in [31, (1.4.5)].

Proposition 2.2. The functional Iα is lower semicontinous for the weak* conver-
gence of measures.

We can then define the Riesz potential energy of a set.

Definition 2.3. Let d ≥ 2 and α > 0 then for every Borel set A we define the Riesz
potential energy of A by

Iα(A) := inf
{
Iα(μ) : μ ∈ M(Rd), μ(A) = 1 . (2.1)

Remark 2.4. Notice that, if we change μ in Qμ for a given charge Q > 0, then
for any Borel set A ⊂ R

d , it holds

Q2Iα(A) := inf
{
Iα(μ) : μ ∈ M(Rd), μ(A) = Q .

Notice also that, for all λ > 0, there holds

Iα(λA) = λ−αIα(A). (2.2)
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Remark 2.5. An important notion related to Iα(A) is the so-called α-capacity
[31,32,34]

Cd−α(A) := 1

Iα(A)
.

For α = d − 2 and K compact, we have the following representation of the capac-
ity [32]:

C2(K ) = inf

{∫
Rd

|∇ f |2 : f ∈ C1
c (R

d), f ≥ 0, f ≥ 1 on K

}
.

We stress however, for the sake of completeness, that there are other notions of
capacity in the literature (see for instance the discussion in [32, Section 11.15]).

Remark 2.6. It is well known that the ball minimizes the perimeter under volume
constraint. On the other hand in [7] it was proven that if α > d − 2, then the ball
maximizes the Riesz Potential Iα among compact sets of given volume.

The proof of the following result is given in [31, p. 131 and 132].

Lemma 2.7. If A is a compact set, the infimum in (2.1) is achieved.

Remark 2.8. When the set A is unbounded, there does not always exist an optimal
measure μ, that is the infimum in (2.1) is not achieved. Indeed, it is possible to
construct a set E of finite volume with Iα(E) = 0. To this aim, consider α ∈
(0, d − 1), γ ∈ ( 1

d−1 ,+∞) and the set E = {(x, x ′) ∈ R × R
d−1 : |x ′| ≤

1 and |x ′| ≤ 1
|x |γ }. The set E hasfinite volumeand taking N balls of radius r = N−β

inside E , at mutual distance � = N
β
γ

−1, with charge 1/N distributed uniformly on
each ball, we have

Iα(E) ≤ C

(
Nαβ−1 + N (1− β

γ
)α

)

for some C > 0, so that Iα(E) = 0 if 1
d−1 < γ < β < 1

α
. Similarly, if d > 2 and

α < d − 2, taking γ > 1
d−2 one can even construct a set with finite perimeter for

which the same property holds.

Definition 2.9. Given a non-negative Radon measure μ on R
d and α ∈ (0, d), we

define the potential function

vμ
α (x) :=

∫
Rd

dμ(y)

|x − y|α = μ ∗ kα(x)

where kα(x) = |x |−α . We will sometime drop the dependence of μ and α in the
definition of v

μ
α and we will refer to it as the potential.

Definition 2.10. We say that two functions u and v are equal α-quasi everywhere
(briefly u = v α-q.e.) if they coincide up to a set of α-capacity 0.
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The Euler-Lagrange equation of Iα(A) reads as follows:

Lemma 2.11. Let A be a compact set and let μ be a minimizer for Iα(A) then
vμ = Iα(A) α-q.e. on spt(μ), and vμ ≥ Iα(A) α-q.e. on A.Moreover, the following
equation holds in the distributional sense

(−�)
d−α
2 vμ = c(α, d) μ, (2.3)

where (−�)s denotes the fractional Laplacian (see [14]). In particular,

(−�)
d−α
2 vμ = 0 on R

d\A.

Proof. The first assertions on vμ follow from [31, Theorem 2.6 and p. 137] (see
also [24] where these conditions were first derived).

Equation (2.3) can be directly verified by means of the Fourier Transform,
namely

̂
(−�)

d−α
2 vμ(ξ) = |ξ |d−αμ̂ ∗ kα(ξ) = c(α, d) μ(ξ),

where we used the fact [31, Equation (1.1.1)]

k̂α(ξ) = c(α, d) kd−α(ξ) with c(α, d) := πα− d
2

�
( d−α

2

)
�

(
α
2

) .

��
We recall another important result which will be exploited in Section 4. We

refer to [31, Theorem 1.15] (see also [32, Corollary 5.10]) for its proof.

Theorem 2.12. For any signed measure μ and for any α ∈ (0, d), there holds

Iα(μ) =
∫
Rd

(
v

μ
α/2(x)

2
dx

and therefore,

Iα(μ) ≥ 0.

Moreover equality holds if and only if μ = 0.

Remark 2.13. A consequence of Theorem 2.12 is that the functional Iα(·, ·) is a
positive, bilinear operator on the product space ofRadonmeasures onR

d ,M(Rd)×
M(Rd). In particular it satisfies the Cauchy-Schwarz inequality

Iα(μ, ν) ≤ Iα(μ)1/2Iα(ν)1/2. (2.4)

The following uniqueness result can be found in [31, page 133].

Lemma 2.14. For every compact set A the measure minimizing Iα(A) is unique.

In the next lemma,we recall some properties of the support of the optimalmeasures.
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Lemma 2.15. Let α ∈ (0, d − 1). For every open bounded set E, the minimizer μ

of Iα(E) satisfies:

(i) If α ≤ d − 2 then spt(μ) ⊂ ∂E. In particular Iα(E) = Iα(∂E).
(ii) If α > d − 2 then spt(μ) = E.

Moreover, when α ≥ d − 2, vμ
α = Iα(E) on E.

Proof. The case α ≤ d − 2 can be found in [31, page 162]. If α > d − 2, by [31,
Theorem2.6 andpage 137],we know that vμ

α = Iα(E) α-q.e. on E and v
μ
α ≤ Iα(E)

on R
d . Moreover, outside of spt(μ), vμ

α is smooth and�v
μ
α > 0. Assume that there

exists x ∈ E\spt(μ). Then there exists an open ball Br (x) ⊂ E\spt(μ), but this
is impossible since this would imply v

μ
α = Iα(E) in Br (x) and hence �v

μ
α = 0

in Br (x), contradicting �v
μ
α > 0. The last claim of the lemma follows by the fact

that vμ
α is, in this case, a regular function on E which is α-q.e. equal to Iα(E). ��

We now prove a density result which is an adaptation of [31, Theorem 1.11 and
Lemma 1.2].

Proposition 2.16. Let E be a smooth connected closed set of R
d , then for every

α ∈ (0, d),

Iα(E) = inf

{
IE

α (μ) : μ = f dx, f ∈ L∞(E),

∫
E
f dx = 1

}
.

Proof. By Definition 2.3 and Lemma 2.7 the proof reduces to the approximation
of Iα(μ) for a given measure μ supported on E and such that μ(E) = 1. Let μ be
such that μ(E) = 1, spt(μ) ⊂ E and Iα(μ) < +∞ then for ε > 0 consider the
measure με dx defined as

dμε(x) =
(∫

Bε(x)∩E

dμ(y)

|E ∩ Bε(y)|
)

dHd E .

Notice that by definition spt(με) ⊆ E . Moreover we have, by the Fubini Theorem,

με(E) =
∫
E

με(x) dx =
∫
E

∫
E

χBε(x)(y) dμ(y)

|Bε(y) ∩ E | dx

=
∫
E

∫
E

χBε(y)(x) dx
dμ(y)

|Bε(y) ∩ E | =
∫
E
dμ(y) = 1.

Since ‖με‖L∞(E) ≤ (minx∈E |Bε(x) ∩ E |)−1 ≤ (Cεd)−1, we only have to prove
that IE

α (με) → Iα(μ). By Theorem 2.12 we have

IE
α (με) =

∫
Rd

(
v

με

α/2(x)
2
dx .

Let us show that for all x ∈ R
d ,

v
με

α/2(x) ≤ Cv
μ
α/2(x) and lim

ε→0
v

με

α/2(x) = v
μ
α/2(x)
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from which we can conclude by means of the Dominated Convergence Theorem.
Denoting by χA the characteristic function of the set A, we have, for any x ∈ R

d ,

v
με

α/2(x) =
∫
E

∫
E

1

|Bε(y) ∩ E |χBε(y)(z)
dμ(z)

|x − y|α/2 dy

=
∫
E

(∫
Bε(z)∩E

1

|Bε(y) ∩ E |
|x − z|α/2

|x − y|α/2 dy

)
dμ(z)

|x − z|α/2

≤
∫
E

(
C

εd

∫
Bε(z)

|x − z|α/2

|x − y|α/2 dy

)
dμ(z)

|x − z|α/2 .

(2.5)

Moreover it is possible to prove that the function

(x, z, ε) �→ ε−d
∫
Bε(z)

|x − z| α
2

|x − y| α
2
dy (2.6)

is uniformly bounded in (x, z, ε) (see [31, Theorem 1.11]) so that v
με

α/2(x) ≤
Cv

μ
α/2(x) for a suitable constant C > 0. Consider now a point x ∈ R

d such

that v
μ
α/2(x) < +∞. Then for every δ > 0 there is a ball Bη(x) such that

v
μ′
α/2 < δ where μ′ = μ Bη(x). By the previous computations, we know that

v
(μ′)ε
α/2 (x) ≤ Cδ. Moreover, limε→0 v

(μ−μ′)ε
α/2 (x) = v

μ−μ′
α/2 (x). Indeed, denoting for

simplicity ν := μ − μ′, we have that

v
νε

α/2(x) =
∫
E

dνε(y)

|x − y|α/2 =
∫
E

∫
E

χBε(y)(z) dν(z)

|Bε(z) ∩ E |
dy

|x − y|α/2

=
∫
E

∫
E

χBε(z)(y) dν(z)

|Bε(z) ∩ E |
dy

|x − y|α/2

=
∫
E

(
1

|Bε(z) ∩ E |
∫
E∩Bε(z)

dy

|x − y|α/2

)
dν(z).

From this the claim follows since the last quantity inside the parentheses uniformly
converges to the function |x − z|−α/2 on every compact set which does not contain
x , and since spt(ν) = spt(μ − μ′) ⊂ B(x, η)c.

Furthermore, we have that v(μ−μ′)ε
α/2 = v

με

α/2 − v
μ′

ε

α/2. Thus we get

v
μ
α/2(x) = v

μ′
α/2(x) + v

μ−μ′
α/2 (x) ≤ δ + lim

ε→0
v

(μ−μ′)ε
α/2 (x)

≤ (1 + C)δ + lim
ε→0

v
με

α/2(x) ≤ (1 + C)δ + lim
ε→0

v
με

α/2(x)

≤ (1 + C)δ + lim
ε→0

v
μ′

ε

α/2(x) + lim
ε→0

v
(μ−μ′)ε
α/2 (x)

≤ 2(1 + C)δ + v
μ
α/2(x) (2.7)

so that letting δ → 0 we get that limε→0 v
με

α/2(x) = v
μ
α/2(x) as claimed. ��

For the unit ball, since the problem is invariant by rotations, it is not hard to
compute the exact minimizer of Iα(B) or Iα(∂B), see [31, Chapter II.13].



Existence and Stability for a Non-Local Isoperimetric Model

Lemma 2.17. The uniform measure on the sphere ∂B

dUB = 1

P(B)
dHd−1 ∂B

is the unique optimizer for Iα(∂B). For d > α > d − 2, the measure

dŨB = Cα

(1 − |x |2) α
2
dHd B

is the unique optimizer forIα(B) (whereCα is a suitable renormalization constant).

Definition 2.18. Given δ > 0, we say that E satisfies the internal δ-ball condition
if for any x ∈ ∂E there is a ball of radius δ contained in E and tangent to ∂E in
x . Analogously, E satisfies the external δ-ball condition if for any x ∈ ∂E there is
a ball of radius δ contained in Ec. Finally, if E satisfies both the internal and the
external δ-ball condition we shall say that it satisfies the δ-ball condition.

We remark that the sets which satisfy the δ-ball condition have C1,1 boundary with
principal curvatures bounded from above by 1/δ, see [12]. We denote by Kδ the
class of all the closed sets which satisfy the δ-ball condition and by Kco

δ the subset
of Kδ composed of connected sets.

Remark 2.19. An equivalent formulation of Definition 2.18 is requiring that dE ∈
C1,1({|dE | < δ}), where

dE (x) =
{
dist(x, ∂E) if x �∈ E

−dist(x, ∂E) if x ∈ E

is the signed distance function from ∂E . See for instance [12].

Lemma 2.20. Let δ > 0, then every set E ∈ Kco
δ with |E | = m satisfies

diam(E) ≤ √
d 2d+2 m

ωd
δ1−d .

Proof. Consider the tiling of R
d given by [0, 2δ)d + 2δZ

d and for k ∈ Z
d let

Ck = [0, 2δ)d + 2δk. For every k ∈ Z
d such that Ck ∩ E �= ∅, let Bδ(xk) be a ball

of radius δ such that Bδ(xk) ⊂ E and Bδ(xk) ∩ Ck �= ∅. The existence of such a
ball is guaranteed by the δ-ball condition. Any such ball can intersect at most 2d

cubes C j so that

�{k ∈ Z
d : E ∩ Ck �= ∅} = 1

|Bδ|
∑

k:Ck∩E �=∅
|Bδ(xk)| ≤ 2d

|Bδ| |E |,

where �A is the cardinality of the set A. The fact that E is connected implies that,

up to translation, E ⊂ [0, 4δ 2d
|Bδ |m]d . Thus we can conclude that

diam(E) ≤ diam

([
0, 4δ

2d

|Bδ|m
]d)

= √
d 2d+2 m

ωd
δ1−d .

��
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Remark 2.21. As already pointed out in the introduction, in some sense the δ-ball
condition is the analog of the famous density estimates for a problem in which
the perimeter term is dominant, see [26]. Since, in the problems we are going to
consider, both the perimeter and the Riesz potential energy are of the same order,
there is a priori no hope of getting such density estimates from the minimality. It is
a classical feature that for connected sets, these density estimates provide a bound
on the diameter [27].

Proposition 2.22. Let d ≥ 3,α = d−2, δ > 0 and E ⊂ R
d be a compact set which

satisfies the δ-ball condition. Then the optimal measure μ for Iα(E) = Iα(∂E)

can be written as μ = fHd−1 ∂E with ‖ f ‖L∞(∂E)
≤ Iα(E)(d − 2)δ−1.

Proof. By Lemma 2.15 we know that the optimizer μ is concentrated on ∂E .
Denote by v = v

μ
d−2 the potential related to μ on E . By Lemma 2.15, we know

that v = Iα(E) on E , and that −�v = μ. By classical elliptic regularity (see for
instance [25, Cor. 8.36]), v is regular in R

d\E , and C1,β up to the boundary of E .
Consider now a point x ∈ ∂E and let y ∈ E such that the ball Bδ(y) is contained in
E and is tangent to ∂E in x . The existence of such a y is guaranteed by the δ-ball
condition satisfied by E . Let u be a solution of

�u = 0 in Bc
δ (y); u = v(x) = Iα(E) on ∂Bδ(y).

Notice that u(z) = Iα(E)δd−2

|z−y|d−2 out of Bδ(y). By themaximum principle for harmonic
functions, u ≤ Iα(E) on ∂E . Thus, again by the maximum principle, applied to
u − v, we get that v ≥ u on R

d\E . Since u(x) = v(x),

|∇v(x)| ≤ |∇u(x)| = Iα(E)(d − 2)δ−1. (2.8)

Let us prove that μ = |∇v|Hd−1 ∂E . For this, let x ∈ ∂E and r > 0 and
consider a test function ϕ ∈ C∞

c (Rd). Then we have

∫
∂E

ϕdμ = −
∫
Rd

ϕ�v =
∫
Rd

〈∇ϕ,∇v〉 dy

=
∫
Ec

〈∇ϕ,∇v〉 dy =
∫

∂E
ϕ〈∇v, νE 〉dHd−1 (2.9)

where νE is the external normal to E . Since v is constant on ∂E , its tangential
derivative is zero. Thus, since v < Iα(E) on R

d\E we have that 〈∇v, νE 〉 ≥ 0.
Therefore, 〈∇v, νE 〉 = |∇v| on ∂E . Hence, by (2.9) we conclude that for every
test function ϕ,

∫
∂E

ϕdμ =
∫

∂E
ϕ|∇v|dHd−1,

which is equivalent to the claim μ = |∇v|Hd−1 ∂E . ��
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3. Non-Existence of Minimizers

Definition 3.1. Let d ≥ 2 and α > 0. For every Q > 0 and every open set E ⊂ R
d

we define the functionals

Fα,Q(E) := P(E) + Q2Iα(E) (3.1)

and
Gα,Q(E) := P(E) + Q2Iα(∂E). (3.2)

Notice that by Lemma 2.15, for α ∈ (0, d − 2] the functionals Fα,Q and Gα,Q

coincide. Notice also that Fα,Q(E) ≡ +∞ if α ≥ d, and Gα,Q(E) ≡ +∞ if
α ≥ d − 1.

In this section we consider a closed, connected, regular set � ⊂ R
d (not nec-

essarily bounded) of measure |�| > m and address the following problems:

inf|E |=m, E⊂�
Fα,Q(E) (3.3)

and
inf|E |=m, E⊂�

Gα,Q(E), (3.4)

where the (implicit) parameter α belongs to (0, d).

Theorem 3.2. For every α ∈ (0, d − 1), there holds

inf|E |=m
Fα,Q(E) = inf|E |=m

Gα,Q(E) = min|E |=m
P(E) =

(
m

ωd

) d−1
d

P(B).

In particular, problems (3.3) and (3.4) do not admit minimizers when � = R
d .

Proof. Let N ∈ N and consider a numberβ whichwill be fixed later on.Consider N
balls of radius rN = N−β whichwe can considermutually infinitely far away (since
sending them away leaves unchanged the perimeter and decreases the potential
interaction energy), and put on each of these balls a charge 1

N . Let VN = NrdNωd

be their total volume and consider the set E to be given by the union of these balls
with a (non-charged) ball of volume m − VN . If we choose β ∈ (1/(d − 1), 1/α),
then we get

lim
N→+∞ Nrd−1

N = 0 and lim
N→+∞

1

N

1

rα
N

= 0, (3.5)

which implies that VN → 0 and

(
m

ωd

) d−1
d

P(B) ≤ P(E) + Q2Iα(E) ≤
(
m − VN

ωd

) d−1
d

P(B)

+C

(
Nrd−1

N + Q2

N

1

rα
N

)
.

Since the right-hand side converges to
(

m
ωd

d−1
d P(B), as N tends to+∞, the claim

follows. ��
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The following result follows directly from the constructionmade in the previous
theorem.

Corollary 3.3. Let α ∈ (0, d − 1) and m > 0. For every 0 < δ < (m/ωd)
1
d

there exists a charge Qδ = Qδ(α,m) such that Qδ → 0 as δ → 0, and the ball
of volume m is not the minimizer of Fα,Q, among sets in Kδ with volume m and
charge Q > Qδ .

We now consider the case of bounded � where the situation is more involved.

Theorem 3.4. Let � be a compact subset of R
d with smooth boundary, and let

0 < m < |�|. Let E0 be a solution of the constrained isoperimetric problem

min {P(E) : E ⊂ �, |E | = m} . (3.6)

Then, for α ∈ (0, d − 1) and Q > 0 we have

inf|E |=m, E⊂�
Fα,Q(E) = inf|E |=m, E⊂�

Gα,Q(E) = P(E0) + Q2Iα(�). (3.7)

Proof. We divide the proof into three steps.

Step 1. For ε > 0 and f ∈ L∞(�), with f ≥ 0 and
∫

�

f dx = 1, we shall

construct a measure μ̃ε with spt(μ̃ε) ⊂ �, μ̃ε(�) = 1, satisfying

P(spt(μ̃ε)) ≤ ε (3.8)

and
Iα(μ̃ε) ≤ I�

α ( f ) + ε. (3.9)

Let δ > λ > 0 be small parameters to be fixed later and consider the tiling of the
space given by [0, λ)d + λZ

d . For every k ∈ Z
d such that (λk + [0, λ)d) ∩ � �= ∅,

we let Ck = λk + [0, λ)d and denote by xk be the center of Ck . Notice that the

number N of such squares Ck is bounded by C(�)λ−d . Letting fk :=
∫
Ck

f dx , it

holds that
∑

|xk−x j |≥2δ

fk f j
|xk − x j |α =

∑
|xk−x j |≥2δ

∫
Ck×C j

f (x) f (y)

|x − y|α
|x − y|α

|xk − x j |α dx dy

≤
∑

|xk−x j |≥2δ

∫
Ck×C j

f (x) f (y)

|x − y|α
(|xk − x j | + 2λ

)α

|xk − x j |α dx dy

≤
∑

|xk−x j |≥2δ

∫
Ck×C j

f (x) f (y)

|x − y|α
(
1 + C(α)

λ

δ

)
dx dy,

(3.10)

where we used the fact that
∑

|xk−x j |≥2δ

∫
Ck×C j

f (x) f (y)

|x − y|α dxdy ≤
∫

�×�

f (x) f (y)

|x − y|α dxdy = I�
α ( f ) < ∞.
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Let now r = (λ/2)β , with β > 1. If dist(xk, R
d\�) ≤ r , we replace the point

xk with a point x̃k ∈ C j (k), with |x̃k − x j (k)| ≥ λ/4, where C j (k) ⊂ � is a cube
adjacent to Ck . For simplicity of notation, we still denote x̃k by xk . We consider N
balls of radius r centered at the points xk , and we set

μ̃ε :=
∑
k

fk
Hd−1(∂Br )

χ∂Br (xk).

Notice that such measures are suitable competitors in the definition of both the
minima appearing in the definition of Fα,Q and Gα,Q . By construction it holds that

spt(μ̃ε) ⊂ � and μ̃ε(�) =
∫

�

f dx = 1. We have

Iα(μ̃ε) =
∑
j,k

fk f j
Hd−1(Br )2

∫
∂Br (x j )×∂Br (xk )

dHd−1(x) dHd−1(y)

|x − y|α

=
∑
k

f 2k
Hd−1(Br )2

∫
∂Br (xk )×∂Br (xk)

dHd−1(x) dHd−1(y)

|x − y|α

+
∑

|x j−xk |<2δ, k �= j

fk f j
Hd−1(Br )2

∫
∂Br (x j )×∂Br (xk )

dHd−1(x) dHd−1(y)

|x − y|α

+
∑

|x j−xk |≥2δ

fk f j
Hd−1(Br )2

∫
∂Br (x j )×∂Br (xk)

dHd−1(x) dHd−1(y)

|x − y|α

= I1 + I2 + I3.

Moreover we have that

I1 ≤ CN‖ f ‖2L∞(�)|Ck |2 1

rα
≤ C‖ f ‖2L∞(�)λ

d−αβ, (3.11)

and

I2 ≤ Cδd N 2‖ f ‖2L∞(�)|Ck |2 1

λα
≤ C‖ f ‖2L∞(�)

δd

λα
. (3.12)

Eventually, from (3.10) it follows that

I3 =
∑

|x j−xk |≥2δ

fk f j
|xk − x j |α

1

Hd−1(Br )2∫
∂Br (x j )×∂Br (xk )

|xk − x j |α
|x − y|α dHd−1(x) dHd−1(y)

≤
∑

|xk−x j |≥2δ

fk f j
|xk − x j |α

(
1 + C(α)

r

δ

≤ I�
α ( f )

(
1 + C(α)

λ

δ

) (
1 + C(α)

r

δ

≤ I�
α ( f ) + C(α)I�

α ( f )
λ

δ
. (3.13)
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Letting λ = δγ , from (3.11), (3.12), (3.13) we then get

Iα(μ̃ε) = I1 + I2 + I3 ≤ I�
α ( f ) + C(α)I�

α ( f )δγ−1

+C‖ f ‖2L∞(�)

(
δγ (d−αβ) + δd−αγ .

Choosing 1 < β < d/α and 1 < γ < d/α, for δ small enough, we obtain (3.9).
We now show that (3.8) also holds. To this end, we notice that

Hd−1(spt(μ̃ε)) ≤ CNrd−1 = CNλβ(d−1) = Cλβ(d−1)−d (3.14)

so that, for λ small enough, (3.8) follows from (3.14) by letting d/α > β >

d/(d − 1), the choice of which is allowed since α < d − 1.

Step 2. Let now E0 be a solution of the constrained isoperimetric problem (3.6),
and let

Eε :=
(
E0 ∪

⋃
k

Br (xk)

)
\Bη, με := μ̃ε Eε

1 − μ̃ε(Bη)
,

where Bη ⊂ E0 is a ball such that |Eε| = m. Notice that spt(με) ⊂ Eε and
με(Eε) = 1. Since

|Bη| =
∣∣∣∣∣E0 ∪

⋃
k

Br (xk)

∣∣∣∣∣ − |Eε| ≤
∣∣∣∣∣
⋃
k

Br (xk)

∣∣∣∣∣ ,
by (3.14) we have

|Bη| d−1
d ≤

∣∣∣∣∣
⋃
k

Br (xk)

∣∣∣∣∣
d−1
d

≤ CP

(⋃
k

Br (xk)

)
≤ Cλβ(d−1)−d ,

so that η ≤ Cλβ− d
d−1 . In particular, recalling (3.9), for λ sufficiently small the

measure με satisfies

Iα(με) ≤ Iα(μ̃ε) + ε ≤ I�
α ( f ) + 2ε. (3.15)

From (3.15) we then get

lim
ε→0

P(Eε) + Q2Iα(με) = P(E0) + Q2I�
α ( f ). (3.16)

Step 3. By Proposition 2.16 we can find a function f ∈ L∞(�) such that∫
�

f dx = 1 and I�
α ( f ) ≤ Iα(�) + ε. Thus (3.7) follows by (3.16) and a diagonal

argument. ��
Thanks to Theorem 3.4 we are able to prove:

Theorem 3.5. For any α ∈ (0, d − 1) and Q > 0, the functional Fα,Q does not
admit local volume-constrained minimizers with respect to the L1 or the Hausdorff
topology.
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Proof. Let K be a compact set, and let �ε, for ε > 0, be a family of open sets with
smooth boundary, such that K ⊂ �ε for any ε > 0, and �ε → K as ε → 0 in the
Hausdorff topology (in particular |�ε\K | → 0 as ε → 0). By Theorem 3.4, it is
enough to show that Iα(�ε) < Iα(K ) for any ε > 0 (with strict inequality), which
follows directly from Lemma 2.15. ��
Remark 3.6. Notice that when α ∈ (d − 2, d − 1), Problem (3.4) relaxes to its
“natural” domain, in the sense that the infimum is P(E0) + Q2Iα(�) and not
P(E0) + Q2Iα(∂�) as one might expect.

Remark 3.7. Notice also that as soon as � contains a ball of volume m then the
solution of the isoperimetric problem (3.6) is a ball.

Remark 3.8. In the statement of Theorem 3.4 it is possible to replace P(E) by
the relative perimeter P(E;�) (see for instance [4]) almost without changing the
proof. In other words, under the hypotheses of Theorem 3.4 we have that

inf|E |=m, E⊂�
P(E;�) + Q2Iα(E) = inf|E |=m, E⊂�

P(E;�) + Q2Iα(∂E)

= P(E�;�) + Q2Iα(�), (3.17)

E� being a solution of the relative isoperimetric problem

min
E⊂�,|E |=m

P(E;�).

Remark 3.9. An interpretation of Theorem 3.4 is that Problem (3.7) decouples into
the isoperimetric problem (3.6) and the charge-minimizing problem (2.1), which
are minimized separately. This is essentially due to the fact that the perimeter is
defined up to a set of zero Lebesgue measure, while the Riesz potential energy is
defined up to a set of zero capacity [31, Chapter 2].

A consequence of this is that the minimum problem

min Fα,Q(E) : |E | = m, E ⊂ A

has in general no solution.

Remark 3.10. For α ∈ [d − 1, d), it seems difficult to construct a sequence of
open sets with vanishing perimeter but of positive capacity. This is due to the fact
that sets of positive α-capacity have Hausdorff measure at least α (see [34]). As a
consequence, the infimum of (3.7) should be strictly larger than P(E0). In order
to study the question of the existence or non-existence of minimizers, one would
need to extend the definition of Fα,Q to sets which are not open. There are mainly
two possibilities to do this. The first is to let for every Borel set E

Fα,Q(E) := P(E) + Q2Iα(E)

where P(E) now denotes the total variation of χE (see [4]). It is easy to see that the
problem is still ill posed in this class. Indeed, for every set E , it is possible to consider
a set F of positive α-capacity but of Lebesgue measure zero so that Fα,Q(E ∪
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F) < Fα,Q(E). The second possibility would be to consider the relaxation of
the functional Fα,Q defined on open sets for a suitable topology. Because of the
previous discussion, we see that the L1 topology, for which the perimeter has
good compactness and lower semicontinuity properties, is not the right one. The
Hausdorff topology might be more adapted to this situation. Unfortunately, the
resulting functional seems hard to identify.

Remark 3.11. When considering a bounded domain A it is also interesting to study
theRiesz potential associatedwith theGreen kernelGA , withDirichlet or Neumann
boundary conditions. Since

GA(x, y) = kd−2(|x − y|) + h(x, y)

with h harmonic in A (see [31, Chapter 1.3], [10]), Theorem 3.4 can be easily
extended to that case.

4. Existence of Minimizers Under Some Regularity Conditions

In the previous section we have seen that we cannot hope to get existence for
Problem (3.3) without some further assumptions on the class of minimization. In
this section we investigate the existence of minimizers in the classes Kδ and Kco

δ ,
defined in Definition 2.18. More precisely, we consider the following problems:

min
{Fα,Q(E) : |E | = m, E ∈ Kco

δ

}
, (4.1)

min
{Gα,Q(E) : |E | = m, E ∈ Kco

δ , (4.2)

min
{Fα,Q(E) : |E | = m, E ∈ Kδ

}
, (4.3)

min Gα,Q(E) : |E | = m, E ∈ Kδ . (4.4)

Notice that, up to rescaling, we can always assume that |E | = ωd . Indeed, if
we let Ẽ := (

ωd
m

)1/d
E , so that |Ẽ | = ωd , from (2.2) we get

Fα,Q(E) = Fα,Q

((
m

ωd

)1/d

Ẽ

)
=

(
m

ωd

) d−1
d

F
α,

(
ωd
m

d−1+α
2d Q

(Ẽ) (4.5)

Gα,Q(E) = Gα,Q

((
m

ωd

)1/d

Ẽ

)
=

(
m

ωd

) d−1
d

G
α,

(
ωd
m

d−1+α
2d Q

(Ẽ). (4.6)

Definition 4.1. For any set E with |E | = ωd , we let δP(E) := P(E) − P(B) ≥ 0
be the isoperimetric deficit of E .

Theorem 4.2. For all Q ≥ 0 problem (4.1) and (4.2) have a solution.

Proof. Let us focus on (4.1) since the proof of the existence for (4.2) is very
similar. Let En ∈ Kco

δ be a minimizing sequence, with |En| = ωd . And let μn

be the corresponding optimal measures for Iα(En). Since P(En) + Q2Iα(En) ≤
P(B) + Q2Iα(B), we have that

δP(En) ≤ Q2Iα(B),
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therefore P(En) is uniformly bounded. By Lemma 2.20, the sets En are also uni-
formly bounded so that by the compactness criterion for functions of bounded
variation (see for instance [4]), there exists a subsequence converging in L1 to
some set E with |E | = m. Similarly, up to subsequence, μn is weakly* converging
to some probability measure μ.

Let us prove that En converges to E also in the Kuratowski convergence, or
equivalently, in the Hausdorff metric (see for instance [5]). Namely we have to
check the following two conditions:

(i) xn → x, xn ∈ En ⇒ x ∈ E;
(i i) x ∈ E ⇒ ∃xn ∈ En such that xn → x .

The second condition is an easy consequence of the L1-convergence. To prove the
first one, we notice that by the internal δ-ball condition, up to choosing a radius r
small enough there exists a constant c = c(d, δ) > 0 such that |B(xn, r)∩En| ≥ crd

which implies, together with the L1-convergence, that a limit point x must be in E .
Similarly one can also prove the Hausdorff convergence of ∂En to ∂E . Since the
family Kco

δ is stable under Hausdorff convergence, we get E ∈ Kco
δ .

Recalling that P is lower semicontinuous under L1 convergence, and that Iα(μ)

is lower semicontinuous under weak*-convergence (for the kernel is a positive
function, and thusIα(·) is the supremumof continuous functional overM), we have

lim
n→+∞

P(En) + Q2Iα(μn) ≥ P(E) + Q2Iα(μ).

By theHausdorff convergence of En , there also holds spt(μ) ⊂ E , which concludes
the proof. ��

Thanks to the quantitative isoperimetric inequality [23], we can also prove
existence for small charges of minimizers even without assuming a priori the con-
nectedness. This is reminiscent of [10,29,30].

Theorem 4.3. There exists a constant Q0 = Q0(α, d) such that, for every δ > 0,
m ≥ ωdδ

d and

Q

m
d−1+α

2d

≤ Q0
δd

m
,

problems (4.3) and (4.4) have a solution.

Proof. We only consider (4.3), since the proof of (4.4) is identical. Assume first
that m = ωd .

As noticed in Theorem 1.5, for every minimizing sequence En ∈ Kδ , with
|En| = ωd , we can assume that there holds

δP(En) ≤ Q2Iα(B).

Thus, up to translating the sets En , by the quantitative isoperimetric inequality [23]
we can assume that

|B�En|2 ≤ C(d) δP(En) ≤ C(d)Q2Iα(B)
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so that |En ∩ Bc| ≤ CQ. Since every connected component of En ∈ Kδ has
volume of at least |Bδ| = ωdδ

d , for Q ≤ c(α, d)δd the set En must be connected.
The existence of minimizers then follows as in Theorem 1.5.

The case of a general volume m can be obtain by rescaling from (4.5). ��
It is natural to expect that, for a charge Q large enough, it is more favorable to

have two connected components rather than one, whichwould lead to non-existence
of minimizers inKδ . Let us prove that it is indeed the case, at least for small enough
α. We start with the following lemma.

Lemma 4.4. Let α > 0 and let E be a compact set then

Iα(E) ≥ 1

diam(E)α
.

In particular,

inf
|E |=ωd ,E∈Kco

δ

Fα,Q(E) ≥
(
m

ωd

) d−1
d

P(B) +
(√

d 2d+2
−α

Q2δ(d−1)α, (4.7)

and

inf
|E |=ωd ,E∈Kco

δ

Fα,Q(E) ≥
(
m

ωd

) d−1
d

P(B) +
(√

d 2d+2
−α

Q2δ(d−1)α. (4.8)

Proof. Let μ be any positive measure with support in E such that μ(E) = 1 then

Iα(E) ≥
∫
E×E

dμ(x)dμ(y)

|x − y|α ≥
∫
E×E

dμ(x)dμ(y)

diam(E)α
= 1

diam(E)α
.

By Lemma 2.20 and thanks to the isoperimetric inequality, we get (4.7) and
(4.8). ��

We can now prove a non-existence result in Kδ .

Theorem 4.5. For all α < 1 there exist c0 = c0(α) > 0 and Q0 = Q0(α) > 0
such that, for every δ > 0, m ≥ c0δd , and

Q

m
d−1+α

2d

> Q0

(m

δd

dα+1−α
2d

problems (4.3) and (4.4) do not have a solution.

Proof. We only discuss problem (4.3), since the non-existence result for problem
(4.4) follows analogously.

As in Theorem 1.6 we first consider the case m = ωd , so that δ ≤ 1. If
there exists a minimizer then the optimal measure μ is necessarily contained in a
connected component of the minimizer. From (4.8) it then follows that the energy
of the minimizer is greater than

P(B) +
(√

d 2d+2
−α

δ(d−1)αQ2, (4.9)
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which bounds from below the energy of any set in Kco
δ with volume ωd . Hence, in

order to prove the non-existence, it is enough to construct a competitor E ∈ Kδ

with energy less than (4.9).
Consider the set E given by N (which we suppose to be an integer) balls of

radius δ, equally charged. Up to increasing their mutual distances, we can suppose
that the Riesz potential energy of E is made only of the self interaction of each ball
with itself. Since N = δ−1 we then have

P(E) + Q2Iα(E) = Nδd−1P(B) + Q2

N
Iα(Bδ) = 1

δ
P(B) + Iα(B)δd−αQ2.

(4.10)

Notice that, if d − α > (d − 1)α, that is if α < 1, there exists δ0 = δ0(α) such that
for all δ ≤ δ0 there holds

Iα(B) δd−α ≤ 1

2

(√
d 2d+2

−α

δ(d−1)α.

With this condition in force, from (4.10) we get

P(E) + Q2Iα(E) < P(B) +
(√

d 2d+2
−α

Q2δ(d−1)α,

for

Q >
√
2P(B)

(√
d 2d+2

α
2 1

δ
dα+1−α

2

.

The general case can be obtain by rescaling from (4.5). ��
Remark 4.6. If α < d−1

d , we can improve the previous estimate on Q by consider-
ing a construction similar to the one of Theorem 3.2. Indeed, for β ∈ (dα, d − 1),
taking N := δ−β charged balls of radius δ and a non charged ball of volume
m − ωd Nδd , we find a contradiction if

Q

m
d−1+α

2d

> Q̃0(α)
(m

δd

β−(1−α)(d−1)
2d

.

Notice that, if α < d−1
2d−1 , we can choose β such that the exponent β−(1−α)(d−1)

2d is
negative.

Remark 4.7. We expect that the non-existence result in Theorem 4.5 also holds
for α ≥ 1, but we where unable to show this, as the class Kδ is fairly rigid which
makes the construction of competitors quite delicate.

5. Minimality of the Ball

In this section we prove that, in the harmonic case α = d − 2, the ball is a
minimizer for Problem (4.3) (for � = R

d ) among sets in the family of the nearly
spherical sets belonging toKco

δ introduced in Definition 2.18, that is, the sets which
are a small W 1,∞ perturbation of the ball and that satisfy the δ-ball condition.
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Consider a set E such that |E | = ωd , and such that ∂E can be written as a graph
over ∂B. In polar coordinates we have

E = R(x)x : R(x) = 1 + ϕ(x), x ∈ ∂B .

The condition |E | = ωd then becomes
∫

∂B

(
(1 + ϕ(x))d − 1 dHd−1(x) = 0

which implies that if ‖ϕ‖L∞(∂B) is small enough, then
∫

∂B
ϕdHd−1 = O

(
‖ϕ‖2L2(∂B)

. (5.1)

Letting

ϕ̄ := 1

|∂B|
∫

∂B
ϕdHd−1,

the Poincaré Inequality gives
∫

∂B
|∇ϕ|2dHd−1 ≥ C

∫
∂B

|ϕ − ϕ̄|2dHd−1

= C(d)

∫
∂B

ϕ2Hd−1 − C(d)

dωd

(∫
∂B

ϕdHd−1
)2

= C(d)

∫
∂B

ϕ2dHd−1 − C

4dωd

(∫
∂B

ϕ2dHd−1
)2

≥ 3

4
C(d)

∫
∂B

ϕ2dHd−1 (5.2)

as soon as ∫
∂B

ϕ2dHd−1 ≤ dωd . (5.3)

Up to translation, we can also assume that the barycenter of E is 0. This implies
that ∣∣∣∣

∫
∂B

xϕ(x)dHd−1(x)

∣∣∣∣ = O
(
‖ϕ‖2L2(∂B)

. (5.4)

Lemma 5.1. Suppose that ϕ : ∂B → R
d parametrizes ∂E and ‖ϕ‖L∞(∂B) is small

enough so that (5.3) is satisfied. Assume also that the barycenter of E is in 0. Then,

δP(E) ≥ c0

∫
∂B

|∇ϕ|2dHd−1 ≥ c1

∫
∂B

|ϕ|2dHd−1 = c1
2

∣∣∣∣
∫

∂B
ϕdHd−1

∣∣∣∣ . (5.5)

Proof. We refer to [21] for the proof of the first inequality. The second inequality
is (5.2), while the third one follows from (5.1). ��

A consequence of Lemma 5.1 is the following corollary.
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Corollary 5.2. Suppose that ∂E is parametrized on ∂B by a function ϕ which
satisfies the hypothesis of Lemma 5.1. Then there exists a positive constant C =
C(α, d) such that

|I∂B
α (ϕ)| ≤ C δP(E), (5.6)

and, for any positive constant λ,

|I∂B
α (λ, ϕ)| ≤ Cλ δP(E). (5.7)

Proof. Inequality (5.7) is an immediate consequence of (5.5). Concerning the first
one we have, by the Hölder inequality and the Fubini Theorem,

I∂B
α (ϕ) =

∫
∂B×∂B

ϕ(x)ϕ(y)

|x − y|α dHd−1(x)dHd−1(y)

≤
(∫

∂B×∂B

ϕ(x)2

|x − y|α dHd−1(x)dHd−1(y)

)1/2

(∫
∂B×∂B

ϕ(y)2

|x − y|α dHd−1(x)dHd−1(y)

)1/2

= C
∫

∂B
ϕ(x)2 dHd−1(x).

So (5.6) follows again from (5.5). ��
We will use the following technical lemma.

Lemma 5.3. Let E = {
R(x)x : R(x) = 1+ϕ(x), x ∈ ∂B

}
and let g ∈ L∞(∂B),

then there exists ε0(α, d) and a constant C = C(α, d) > 0 such that if
‖ϕ‖

W 1,∞(∂B)
≤ ε0 ≤ 1,

∣∣∣∣
∫

∂B×∂B

(
1

|R(x) − R(y)|α

− (1 − α
2ϕ(x))(1 − α

2ϕ(y))

|x − y|α
)
g(x)g(y)dHd−1(x) dHd−1(y)

∣∣∣∣
≤ C(α, d)(1 + ε0)‖g‖2L∞(∂B)

δP(E). (5.8)

Proof. First, notice that since |x | = |y| = 1 we have

|R(x)x − R(y)y|2 = |x − y|2 (1 + ϕ(x) + ϕ(y) + ϕ(x)ϕ(y) + ψ(x, y)) (5.9)

where ψ(x, y) = (ϕ(x)−ϕ(y))2

|x−y|2 . Hence, for any x, y ∈ ∂B there holds,

|R(x)x − R(y)y|−α

= (1 − α
2ϕ(x))(1 − α

2ϕ(y)) + α(4−α)
4 ϕ(x)ϕ(y) − α

2 (ψ(x, y) + η(x, y))

|x − y|α
(5.10)
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where

0 ≤ η(x, y) ≤ C
(
ϕ2(x) + ϕ2(y) + ψ2(x, y) .

By (5.10) we get
∫

∂B×∂B

(
1

|R(x) − R(y)|α − (1 − α
2ϕ(x))(1 − α

2ϕ(y))

|x − y|α
)

g(x)g(y)dHd−1(x) dHd−1(y)

= α(4 − α)

4

∫
∂B×∂B

ϕ(x)ϕ(y)

|x − y|α g(x)g(y) dHd−1(x)dHd−1(y)

−α

2

∫
∂B×∂B

ψ(x, y) + η(x, y)

|x − y|α g(x)g(y) dHd−1(x)dHd−1(y). (5.11)

By Corollary 5.2 we get
∫

∂B×∂B

ϕ(x)ϕ(y)

|x − y|α dHd−1(x)dHd−1(y) = I∂B
α (ϕ) ≤ CδP(E).

Furthermore, we have

0 ≤ ψ(x, y) ≤ ‖∇ϕ‖2
L∞(∂B)

≤ ε0,

and
∫

∂B×∂B

ϕ(x)2 dHd−1(x)dHd−1(y)

|x − y|α =
∫

∂B

dHd−1(y)

|x − y|α
∫

∂B
ϕ(x)2 dHd−1(x)

≤ c(α, d)ε20,

for a suitable constant c(α, d). Therefore, since η(x, y) ≤ C
(
ϕ2(x) + ϕ2(y)

+ψ(x, y)), to prove (5.8) we only have to check that
∫

∂B×∂B

ψ(x, y)

|x − y|α dHd−1(x)dHd−1(y) ≤ CδP(E).

To this end, consider x, y in ∂B and denote by �x,y the geodesic going from
x to y and by �(x, y) the geodesic distance between x and y (that is the length of
�x,y). Notice that on ∂B, the euclidean distance and � are equivalent so that it is
enough to prove

∫
∂B×∂B

�(x, y)−(α+2)(ϕ(x) − ϕ(y))2 dHd−1(x)dHd−1(y) ≤ CδP(E).

We have∫
∂B×∂B

�(x, y)−(α+2)(ϕ(x) − ϕ(y))2

≤ c(d)

∫
∂B×∂B

�(x, y)−(α+1)
∫

�x,y

|∇ϕ|2(z)dz dHd−1(x)dHd−1(y)
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≤ c(d)

∫
∂B

∫ 2π

0
t−(α+1)td−1

(∫
{�(x,z)≤t}

|∇ϕ|2(z)dHd−1(z)

)
dt dHd−1(x)

= c(d)

∫ 2π

0
t (d−1)−(α+1)

(∫
∂B

∫
{�(x,z)≤t}

|∇ϕ|2(z)dHd−1(x)dHd−1(z)

)
dt

= c(d)Hd−2(Sd−2)

∫ 2π

0
t (d−1)−α

(∫
∂B

|∇ϕ|2(z)dHd−1(z)

)
dt

= c(d)Hd−2(Sd−2)

∫ 2π

0
t (d−1)−α dt

(∫
∂B

|∇ϕ|2(z)dHd−1(z)

)

≤ CδP(E)

where S
d−2 is the (d − 2)-dimensional sphere and where we used the fact that

α < d − 1 together with (5.5). ��
Before we prove our main stability estimates, we recall a classical interpolation

inequality.

Lemma 5.4. For every 0 ≤ p < q < r < +∞, there exists a constant C(r, p, q)

such that for every ϕ ∈ Hr (Rd), there holds

‖ϕ‖
Hq (Rd )

≤ C
(
‖ϕ‖

Hr (Rd )

r−q
r−p

(
‖ϕ‖

H p(Rd )

q−p
r−p

, (5.12)

where we adopted the notation ‖u‖H p(Rd ) := ‖|ξ |pû‖L2(Rd ) and H p(Rd) := {u ∈
L2(Rd) : ‖u‖H p < +∞}, û being the Fourier transform of the function u.

Proof. Let ϕ ∈ Hr (Rd) and λ > 0, then we have

‖ϕ‖2
Hq (Rd )

=
∫
Rd

|ϕ̂|2|ξ |2qdξ =
∫

|ξ |≤λ

|ϕ̂|2|ξ |2p|ξ |2(q−p)dξ

+
∫

|ξ |≥λ

|ϕ̂|2|ξ |2r |ξ |2(q−r)dξ

≤ λ2(q−p)‖ϕ‖2
H p(Rd )

+ λ−2(r−q)‖ϕ‖2
Hr (Rd )

.

An optimization in λ yields (5.12). ��
Proposition 5.5. Let α ∈ [d − 2, d − 1), f ∈ L∞(∂E) and

∂E = R(x)x : R(x) = 1 + ϕ(x), x ∈ ∂B .

Then there exist ε0(α) > 0 and C = C(α) > 0 such that if ‖ϕ‖
W 1,∞(∂B)

≤ ε0 then

I∂E
α ( f ) − I∂B

α ( f̄ ) ≥ −C‖ f ‖2L∞(∂E)δP(E), (5.13)

where f̄ := 1

P(E)

∫
∂E f dHd−1.
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Proof. We have

I∂E
α ( f ) =

∫
∂E×∂E

f (x) f (y)

|x − y|α dHd−1(x) dHd−1(y)

=
∫

∂B×∂B

g(x)g(y)

|R(x) − R(y)|α dHd−1(x)dHd−1(y)
(5.14)

where we set

g(x) = f (R(x)x)R(x)d−2
√
R(x)2 + |∇R(x)|2.

To choose ε0 small enough, we can suppose that

‖g‖L∞(∂B) ≤ 2‖ f ‖L∞(∂E). (5.15)

Let ḡ := 1

P(B)

∫
∂B

gdHd−1 = P(E)

P(B)
f̄ . Then we have

I∂E
α ( f ) − I∂B

α ( f ) = I∂E
α ( f ) − I∂B

α (g) + I∂B
α (g) − I∂B

α ( f ).

Focusing on the last two terms in the previous equality we have

∣∣∣I∂B
α (g) − I∂B

α ( f )
∣∣∣ = I∂B

α ( f )

∣∣∣∣∣1 −
(
P(E)

P(B)

)2
∣∣∣∣∣

= C f̄ 2
P(E) + P(B)

P(B)2
|P(E) − P(B)|

≤ C(α, d)‖ f ‖2L∞(∂E)δP(E).

Therefore, to prove (5.13) we only need to show that

I∂E
α ( f ) ≥ I∂B

α (ḡ) − ‖g‖2L∞(∂B) δP(E). (5.16)

Formula (5.14) together with Lemma 5.3 imply

I∂E
α ( f ) = I∂B

α

(
g(1 − α

2
ϕ) + R(g, ϕ)

with

|R(g, ϕ)| ≤ c‖g‖2L∞(∂E) δP(E),

so that

I∂E
α ( f ) ≥ I∂B

α

(
g(1 − α

2
ϕ) − c‖g‖2L∞(∂E) δP(E). (5.17)
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We need to estimate I∂B
α (g(1−α/2)ϕ). By the bilinearity of I∂B

α we have that

I∂B
α (g(1 − α

2
ϕ)) = I∂B

α (g(1 − α

2
ϕ), g(1 − α

2
ϕ))

= I∂B
α (g, g) − αI∂B

α (g, gϕ) + α2

4
I∂B

α (gϕ, gϕ)

= I∂B
α (ḡ, ḡ) + I∂B

α (g − ḡ, g − ḡ) − αI∂B
α (g − ḡ, gϕ) − αI∂B

α (ḡ, gϕ)

+ α2

4
I∂B

α (ḡϕ, ḡϕ) + α2

2
I∂B

α (ḡϕ, (g − ḡ)ϕ) + α2

4
I∂B

α ((g − ḡ)ϕ, (g − ḡ)ϕ)

= I∂B
α (ḡ) + I∂B

α (g − ḡ) + α2

4
I∂B

α ((g − ḡ)ϕ) − αI∂B
α (g − ḡ, (g − ḡ)ϕ)

−αI∂B
α (ḡ, (g − ḡ)ϕ) − αI∂B

α (g − ḡ, ḡϕ) + α2

2
I∂B

α (ḡϕ, (g − ḡ)ϕ)

−αI∂B
α (ḡ, ḡϕ) + α2

4
I∂B

α (ḡϕ). (5.18)

Thanks to (5.7), the last two terms in the right hand side of (5.18) satisfy

−I∂B
α (ḡ, ḡϕ) + α

4
I∂B

α (ḡϕ) ≥ −cḡ2 δP(E). (5.19)

By the Cauchy-Schwarz inequality (2.4) and Young’s inequality, we get that for
every function h1 and h2 and for any ε > 0,

I∂B
α (h1, h2) ≤ I∂B

α (h1)
1
2 I∂B

α (h2)
1
2 ≤ εI∂B

α (h1) + 1

4ε
I∂B

α (h2). (5.20)

In particular, applying such an inequality to the functions h1 = g − ḡ and h2 =
(g− ḡ)ϕ in the fourth term in the right hand side of (5.18), and then to h1 = g− ḡ
and h2 = ḡϕ in the sixth term, and exploiting (5.19), we obtain the existence of a
positive constant C such that

I∂B
α (g(1 − α

2
ϕ)) − I∂B

α (ḡ)

≥ C

(
1

2
I∂B

α (g − ḡ) − I∂B
α (ḡ, (g − ḡ)ϕ) − I∂B

α ((g − ḡ)ϕ) − ḡ2 δP(E)

)
.

(5.21)

Again, by Lemma 5.1, we have that

−I∂B
α ((g − ḡ)ϕ) ≥ −‖g‖2L∞(∂B)I∂B

α (ϕ) ≥ −C‖g‖2L∞(∂B) δP(E).

Let us show that the term I∂B
α (ḡ, (g − ḡ)ϕ) can be estimated by the term

I∂B
α (g − ḡ).
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Let ϕ̃ : R
d → R be a regular extension of ϕ, and let g̃ = (g − ḡ)dHd−1 ∂B.

By a Fourier transform we get

I∂B
α (ḡ, (g − ḡ)ϕ) =

∫
∂B

dHd−1(x)

|x − y|α ḡ
∫

∂B
(g − ḡ) dHd−1(y)ϕ = c(α, d)ḡ

∫
Rd

ϕ̃̂̃g

≤ ḡ

(∫
Rd

ϕ̃
2|ξ |d−α

) 1
2
(∫

Rd

̂̃g2
|ξ |d−α

) 1
2

= ḡ‖ϕ̃‖
H

d−α
2 (Rd )

I∂B
α (g − ḡ, g − ḡ)

1
2

≤ C(d)ḡ‖ϕ‖
H

d−α
2 (∂B)

I∂B
α (g − ḡ)

1
2 .

We now observe that, if

I∂B
α (ḡ, (g − ḡ)ϕ) ≤ 1

2
I∂B

α (g − ḡ), (5.22)

then we would get

I∂B
α (g(1 − α

2
ϕ)) − I∂B

α (ḡ) ≥ −C‖ḡ‖2L∞(∂B) δP(E),

which would imply (5.16) and so the claim of the proposition. On the other hand
if (5.22) does not hold, then, considering again a regular extension ϕ̃ : R

d → R of
ϕ, we have

I∂B
α (g − ḡ) < C(d)ḡ‖ϕ‖

H
d−α
2 (∂B)

I∂B
α (g − ḡ)

1
2 ,

which implies that

I∂B
α (g − ḡ)

1
2 < Cḡ‖ϕ‖

H
d−α
2 (∂B)

,

so that

I∂B
α (ḡ, (g − ḡ)ϕ) ≤ Cḡ‖ϕ‖

H
d−α
2 (∂B)

I∂B
α (g − ḡ)

1
2 ≤ Cḡ2‖ϕ‖2

H
d−α
2 (∂B)

.

If d−α
2 ≤ 1 then using (5.12) with p = 0, q = d−α

2 and r = 1, in order to once
again regularly extend ϕ on R

d , we obtain

‖ϕ‖2
H

d−α
2 (∂B)

≤ c0

(
‖ϕ‖2

H1(∂B)

)1− d−α
2

(
‖ϕ‖2

L2(∂B)

) d−α
2

≤ c1

(
‖ϕ‖2

H1(∂B)
+ ‖ϕ‖2

L2(∂B)

)
≤ CδP(E),

which concludes the proof. ��
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Theorem 5.6. Let d ≥ 3 and α = d − 2. Then for any δ > 0 and m ≥ ωdδ
d , there

exists a charge Q̄
(

δ
m1/d

)
> 0, such that if

Q

m
d−1+α

2d

≤ Q̄

(
δ

m1/d

)

the ball is the unique minimizer of problem (4.3).

Proof. As a rescaling we can assumem = ωd . By Theorem 1.6, there existsC > 0

such that problem (4.3) admits a minimizer EQ for every Q ∈ (0,Cδ
d
2 ). Since

|EQ�B|2 ≤ CδP(EQ) ≤ Q2Iα(B), EQ converges to B in L1 when Q → 0. As
in Theorem 1.5, there is also convergence in the Hausdorff sense of EQ and ∂EQ

thanks to the δ-ball condition. Again, by the δ-ball condition and the Hausdorff
convergence of the boundaries, for Q small enough, ∂EQ is a graph over ∂B of
some C1,1 function with C1,1 norm bounded by 2/δ. From this we see that if
∂EQ = {(1 + ϕQ(x))x : x ∈ ∂B} then ‖ϕQ‖

W 1,∞(∂B)
is converging to 0. We can

thus assume that ϕQ satisfies the hypotheses of Proposition 5.5.
Let μ = f dHd−1 ∂EQ be the minimizer of Iα(EQ). Since Iα(EQ) ≤

P(B) + Q2Iα(B), by Proposition 2.22, ‖ f ‖L∞(∂E)
≤ (d − 2)δ−1(P(B) +

Q2Iα(B)). Let f̄ := 1

P(EQ)
= 1

P(EQ)

∫
∂EQ

f dHd−1. By Lemma 2.17 we know

that the optimal measure for Iα(B) is given by Hd−1 ∂B
P(B)

. By the minimality of
EQ we then have

δP(EQ) = P(EQ) − P(B) ≤ Q2(Iα(B) − Iα(EQ))

= Q2
(
I∂B

α ( f̄ ) − I∂EQ
α ( f ) + I∂B

α (1/P(B)) − I∂B
α (1/P(EQ)) .

A simple computation shows that

I∂B
α (1/P(B)) − I∂B

α (1/P(EQ)) ≤ C2 δP(EQ)

for a suitable positive constant C = C(α, d). Hence, by Proposition 5.5 we have
that

δP(EQ) ≤ CQ2 δP(EQ)(1 + ‖ f ‖2L∞(∂EQ)) ≤ CQ2 δP(EQ),

which implies δP(EQ) = 0 that is EQ = B, for Q small enough. ��
Remark 5.7. We recall that a counterpart of Theorem 1.7 holds as well. Indeed, in
[20] it was proven that if Q overcomes a certain threshold, any radial set (and in
particular the ball) is unstable under small C2,β perturbations.

Remark 5.8. The previous proof of stability does not apply to the case α > d − 2.
Indeed, this proof relies on L∞ bounds for the optimal measure μ for Iα which we
are not able to obtain in that case. For the very same reason, our approach seems
not to work if we replace the class Kδ by the class of convex sets. In fact, for a
set with Lipschitz boundary, the optimal measure is not expected to be in L∞. In
particular, if E is convex, then its optimal measure blows-up at every non-regular
point of ∂E , as shown in Example 6.5.
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Remark 5.9. Notice that as an aside of the previous analysis we obtained a sta-
bility result of Fuglede type (see [21]). Indeed collecting the results of Lemma
5.3, Proposition 5.5 and the proof of Theorem 5.6, we showed that if E is a C1,1

small perturbation of the ball B, with |E | = |B|, then the following quantitative
inequality holds true

P(E) − P(B) ≥ C (Iα(B) − Iα(E)) ,

where the constant C > 0 is independent of E .

6. The Logarithmic Potential Energy

In this section we investigate the same types of questions for the logarith-
mic potential which are given by − log(|x |). This potential naturally arises in two
dimensions where it corresponds to the Coulomb interaction. Let then

Ilog(E) := min
μ(E)=1

∫
Rd×Rd

− log(|x − y|)dμ(x)dμ(y), (6.1)

and consider the problem

min|E |=m
P(E) + Q2Ilog(E). (6.2)

In analogy to the notation adopted for the Riesz potential we define, for any Borel
functions f and g, the following quantity

Ilog∂E ( f, g) :=
∫

∂E×∂E
− log(|x − y|) f (x) g(y)dHd−1(x) dHd−1(y).

We list below some important properties of Ilog without proof, since they are
analogous to those given in Section 2 for the Riesz potential. We refer to [31,40]
for comprehensive guides on the logarithmic potential.

Proposition 6.1. The following properties hold:

(i) for every compact set E, there exists a unique optimal measure μ for Ilog(E)

which is concentrated on the boundary of E;
(ii) for every Borel measure μ it holds

Ilog(μ) =
∫
Rd

(
v

μ
d/2(x)

2
dx ≥ 0

where

v
μ
d/2(x) =

∫
Rd

− log |x − y| dμ(y);

(iii) for every smooth set E, if μ is the optimal measure for Ilog, then the equality∫
∂E

− log(|x − y|)dμ(y) = Ilog(E) holds for every x ∈ ∂E. Moreover the

optimal measure for the ball is the uniform measure;
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(iv) if d = 2, then for every bounded set E satisfying the δ-ball condition,
the optimal measure is given by some measure μ = fHd−1 ∂E with

‖ f ‖L∞(∂E)
≤ Ilog(E)

| log(δ)| .

In this setting, since the potential can be negative, the picture is slightly different
from that related to the Riesz energy. Indeed, we have the following Theorem.

Theorem 6.2. The following statements hold true:

(i) inf |E |=m P(E) + Q2Ilog(E) = −∞.
(ii) for any δ > 0, if m > 2ωdδ

d then inf |E |=m,E∈Kδ
P(E) + Q2Ilog(E) = −∞,

(iii) for every Q > 0 and every m > ωdδ
d , there exists a minimizer of

min
|E |=m,E∈Kco

δ

P(E) + Q2Ilog(E),

(iv) for every bounded smooth domain �,

inf|E |=m,E⊂�
P(E) + Q2Ilog(E) = min|E |=m,E⊂�

P(E) + Q2Ilog(�).

Proof. Statement (i i) implies (i) while (i i i) can be proven exactly as in Theorem
1.5 and (iv) as Theorem 3.4. To prove (i i)we set En = Bδ(xn1 )∪Bδ(xn2 ) and notice
that if dist(xn1 , xn2 ) goes to infinity, then Ilog(En) → −∞ as n → +∞. ��

Since Ilog(λE) = Ilog(E) − log(λ) for every λ > 0, without loss of generality
we shall assume that m = |B1/2| = π/4 in Problem (6.2). The following result is
the counterpart of Proposition 5.5.

Proposition 6.3. Let d = 2, E = R(x)x : R(x) = 1 + ϕ(x), x ∈ ∂B1/2 and
let f ∈ L∞(∂E) then there exists ε0 and a constant C = C(α) > 0 such that if
‖ϕ‖

W 1,∞(∂B1/2)
≤ ε0. Then

I∂E
log ( f ) − I∂B1/2

log ( f̄ ) ≥ −C‖ f ‖2L∞(∂E) δP(E),

where f̄ := 1

P(E)

∫
∂E

f dH1.

Proof. Notice that since E ⊂ B, the logarithmic potential is positive. As in the
proof of Proposition 5.5, we have

I∂E
log ( f ) =

∫
∂B1/2×∂B1/2

− log(|R(x) − R(y)|)g(x)g(y)dH1(x)dH1(y),

where g(x) = f (R(x)x)
√
R(x)2 + |∇R(x)|2. Reminding that from (5.9), we have

|R(x)x − R(y)y| = |x − y| (1 + ϕ(x) + ϕ(y) + ϕ(x)ϕ(y) + ψ(x, y))1/2 ,
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where, ψ(x, y) = (ϕ(x)−ϕ(y))2

|x−y|2 , we see that

I∂E
log ( f ) =

∫
∂B1/2×∂B1/2

− log(|x − y|) g(x)g(y) dH1(x)dH1(y)

+ 1

2

∫
∂B1/2×∂B1/2

− log(1 + ϕ(x) + ϕ(y) + ϕ(x)ϕ(y) + ψ(x, y))

g(x)g(y) dH1(x)dH1(y).

As in Proposition 5.5, letting ḡ := 1

P(B1/2)

∫
∂B1/2

g dH1, we have

I∂B1/2
log (g) =

∫
∂B1/2×∂B1/2

− log(|x − y|) g(x)g(y) dH1(x)dH1(y)

= I∂B1/2
log (ḡ) + I∂B1/2

log (g − ḡ)

and

I∂B1/2
log (ḡ) − I∂B

log ( f̄ ) ≤ C‖ f ‖2L∞(∂E) δP(E).

Using that for |t | ≤ 1, | log(1 + t) − t | ≤ t2
2 , we see that∫

∂B1/2×∂B1/2
− log(1 + ϕ(x) + ϕ(y) + ϕ(x)ϕ(y)

+ψ(x, y)) g(x)g(y) dH1(x)dH1(y)

= −
∫

∂B1/2×∂B1/2
(ϕ(x) + ϕ(y) + ϕ(x)ϕ(y) + ψ(x, y)

+ η(x, y)) g(x)g(y) dH1(x)dH1(y)

where the function η(x, y) is well controlled. As in Lemma 5.3,
∫

∂B1/2×∂B1/2
ϕ(x)ϕ(y)g(x)g(y) dH1(x)dH1(y) ≤ C‖g‖2L∞(∂B1/2) δP(E)

and
∫

∂B1/2×∂B1/2
ψ(x, y) g(x)g(y) dH1(x)dH1(y) ≤ C

(∫ 2π

0
t dt

)
δP(E).

Since∫
∂B1/2×∂B1/2

ϕ(x)g(x)g(y)dH1(x)dH1(y) = ḡ
∫

∂B1/2
ϕ(x) (g(x) − ḡ) dH1(x)

+ ḡ2P(B1/2)

∫
∂B1/2

ϕ(x)dH1(x),
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and since
∫

∂B1/2
ϕ(x)dH1(x) ≤ CδP(E), we are left to prove that

I∂B1/2
log (g − ḡ) − ḡ

∫
∂B1/2

ϕ(x) (g(x) − ḡ) dH1(x) ≥ Cḡ2δP(E). (6.3)

As in the proof of Proposition 5.5, we use the Fourier transform to assert that for
some regular extension ϕ̃ of ϕ and for g̃ := (g − ḡ)H1 ∂B1/2,

∫
∂B1/2

ϕ(x) (g(x) − ḡ) dH1(x) ≤
(∫

R2
ϕ̃
2|ξ |2 dξ

)1/2 (∫
R2

g̃
2|ξ |−2 dξ

)1/2

≤ C‖ϕ‖
H1I

∂B1/2
log (g − ḡ)

from which (6.3) follows arguing exactly as in the last part of the proof of Propo-
sition 5.5. ��

Arguing as in the proof of Theorem 1.7, we get the following result.

Corollary 6.4. Let d = 2 then for any δ > 0 andm > 0, there exists a Q̄
(

δ√
m

)
> 0

such that, if Q
m1/4 < Q̄

(
δ√
m

)
, the ball is the unique minimizer of problem (6.2)

among the sets in Kδ with charge Q.

Example 6.5. In this example we show that if the boundary of a convex set is non-
regular at a point x , then the optimal measure for K is not bounded at x . For
simplicity we offer the example just in dimensions 2 and 3. It is not difficult to
extend such an example to any dimension. Let us start with the case d = 2. Let
K ⊂ R

2 be a compact convex set and let μ be the optimal measure for K in the
sense of (2.1). Suppose that x ∈ ∂K is not a regular point, that is the tangent cone
of K at x spans an γ < π . Let us denote such a cone by C . Up to a rotation and a
translation of K we can suppose that x = 0 and that C takes the form

C = {(x, y) : 0 ≥ y ≥ tan(γ )x}.
Let, as usual, v be the potential of K with respect to the logarithmic kernel, so that,
in particular

{
−�v = 0 on R

2\K
v = c on ∂K .

Let us consider the function u which, in polar coordinates takes the form

u(r, θ) = r
π

2π−γ sin

(
π

2π − γ
θ

)
.

Then we can construct the barrier function uε as follows:

uε = c − εu,
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where ε is a positive parameter that will be fixed later. Notice that uε is an harmonic
function on R

2\C which is constantly equal to c on ∂C . Since v is a continuous
function, we can choose a radius R > 0 such that v > c/2 on B(0, R) ∩ (R2\C).
By imposing

uε > v on ∂B(0, R) ∩ (R2\C),

that is,

ε <
c

2maxθ∈[0,2π−γ ] u(R, θ)
,

we get, by the comparison principle between harmonic functions, that uε ≥ v on
(R2\C) ∩ B(0, R). Since v(0) = u(0) = c, this entails that

lim
y→0,y �∈K |∇v(y)| ≥ |∇u(0)|.

Moreover we have |∇u(ρ, θ)| = C(γ )ρ
π

2π−γ
−1 which is finite in 0 only if γ ≥ π .

We conclude thanks to Proposition 2.22 that μ = |∇v|H1 ∂K holds.
To deal with the case d = 3 we simply notice that if ∂K is not regular at a point

x ∈ ∂K , where K is now a convex set contained in R
3, then there exist two tangent

planes intersecting at x which divide R
3 into two conical components of the form

C ′ = C × R, and R
3\C ′, C being a cone of R

2, and such that K ⊆ C ′. Thus, by
considering the function which in cylindric coordinates takes the form

u(ρ, θ, z) = r
π

2π−γ sin

(
π

2π − γ
θ

)
,

and as before, uε = c−εu, since such a function is harmonic inR
3\C ′ and equals v

on x , we can repeat an analogous argument to that performed in the two dimensional
case to show that ∞ = |∇uε(x)| ≤ |∇v(x)|, v being the (Coulombic) potential of
the set K.
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