This letter illustrates simple assumptions for proving consistency of the maximum likelihood estimator under multivariate Gaussian and Student's t linear cluster-weighted models, which allow density estimation, clustering and linear regression analysis with continuous random predictors in presence of unobserved heterogeneity.

Galimberti G, Soffritti G (2020). A note on the consistency of the maximum likelihood estimator under multivariate linear cluster-weighted models. STATISTICS & PROBABILITY LETTERS, 157, 1-5 [10.1016/j.spl.2019.108630].

A note on the consistency of the maximum likelihood estimator under multivariate linear cluster-weighted models

Galimberti G;Soffritti G
2020

Abstract

This letter illustrates simple assumptions for proving consistency of the maximum likelihood estimator under multivariate Gaussian and Student's t linear cluster-weighted models, which allow density estimation, clustering and linear regression analysis with continuous random predictors in presence of unobserved heterogeneity.
2020
Galimberti G, Soffritti G (2020). A note on the consistency of the maximum likelihood estimator under multivariate linear cluster-weighted models. STATISTICS & PROBABILITY LETTERS, 157, 1-5 [10.1016/j.spl.2019.108630].
Galimberti G; Soffritti G
File in questo prodotto:
File Dimensione Formato  
11585_732057.pdf

Open Access dal 02/03/2022

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/732057
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact