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Abstract

This letter illustrates simple assumptions for proving consistency of

the maximum likelihood estimator under multivariate Gaussian and Stu-

dent’s t linear cluster-weighted models, which allow density estimation,

clustering and linear regression analysis with continuous random predic-

tors in presence of unobserved heterogeneity.

Keywords: Mixture model; Envelope function; Linear model; Regularity

condition

1 Introduction

Cluster-weighted modelling represents a flexible framework for data analysis in
which both supervised and unsupervised techniques are exploited. In this frame-
work, the joint distribution of a given random vector is modelled by assuming
that this vector is composed of an outcome (response, dependent variable) and
its explanatory variables (covariates, predictors). Furthermore, a finite mixture
is embedded into the model in order to account for the possible presence of
unknown clusters of units. Thus, cluster-weighted models are capable of cap-
turing both observed and unobserved sources of relevant information from a
sample, and can be used for density estimation, clustering and/or regression
analysis with random covariates in the presence of unobserved heterogeneity.
The usefulness and effectiveness of such models are prominent when the sample
observations come from several sub-populations, the effect of the covariates on
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delle Belle Arti 41, 40126 Bologna, Italy. E-mail address: gabriele.soffritti@unibo.it

1



the response changes with the sub-populations and the covariates are not under
the control of the researcher.

Cluster-weighted models date back to the late 20th century. Gershenfeld
(1997) introduces a model for continuous variables and a univariate response,
based on Gaussian mixtures. Recently, the research on such models has been
intense. In Ingrassia et al. (2012) and Ingrassia et al. (2014), models under both
Gaussian and Student’s t mixture distributions are studied and compared. The
use of t distributions makes the resulting cluster-weighted models more versa-
tile and robust against the possible presence of outliers both in the response
and in the covariates. Punzo and Ingrassia (2013), Punzo and Ingrassia (2015)
and Ingrassia et al. (2015) develop extensions for dealing with various types of
responses. Models with non-linear relationships are described in Punzo (2014).
Solutions suitable when there are many covariates can be found in Subedi et
al. (2013), Subedi et al. (2015), respectively. Dang et al. (2017) focus on the
situation of continuous covariates and a multivariate response through the use
of Gaussian mixtures; the resulting model is able to account for correlation
among responses. Furthermore, parsimonious specifications of this latter model
are also introduced in Dang et al. (2017), where suitable constraints are im-
posed on the eigen-decomposition of the component-covariance matrices so as
to mitigate the problem of a large number of model parameters when dealing
with several variables. Robust methods for cluster analysis and regression anal-
ysis based on cluster-weighted models are due to Punzo and McNicholas (2017)
and Garćıa-Escudero et al. (2017), respectively. A package which enables any
researcher to fit cluster-weighted models for a univariate response under either
the Student’s t distribution or some exponential family distributions has been
recently developed (Mazza et al., 2018). Methods for the analysis of multilevel
data and mixed-support longitudinal data in the framework of cluster-weighted
models are due to Berta et al. (2016) and Punzo et al. (2018), respectively.

Similar to any mixture model, cluster-weighted models are affected by some
identification issues. As far as the parameter estimation is concerned, the EM
algorithm in the maximum likelihood (ML) framework is generally employed
(Dempster et al., 1977). The parameter estimation is performed for a fixed
number of mixture components; thus, if this number is unknown, different mod-
els will have to be estimated and compared in order to detect the one that best
fits to a given sample. This latter goal is achieved by resorting to information
criteria, such as the Bayesian information criterion (Schwarz, 1978).

Consistency, asymptotic normality and asymptotic efficiency are large sam-
ple properties of an estimator useful for constructing approximate confidence
intervals and testing hypotheses. Thus, conditions ensuring these properties for
specific classes of estimators and/or specific classes of models have been exten-
sively studied and defined in the literature. Frequently, the results on the above
mentioned properties are hierarchically nested. Namely, the asymptotic nor-
mality results assume consistency and the asymptotic efficiency results assume
asymptotic normality. In line with previous studies, this paper illustrates sim-
ple assumptions on the parameters of the multivariate Gaussian and Student’s
t linear cluster-weighted models and shows that such assumptions ensure the
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consistency of the ML estimator under the examined models. The proofs of
these consistency results exploit some general regularity conditions illustrated
in Newey and McFadden (1994).

The paper is organised as follows. Section 2 contains some preliminary
definitions concerning the classes of multivariate Gaussian and Student’s t linear
cluster-weighted models. The assumptions on the parameters of the Gaussian
model class are described in Section 3, where a theorem and two lemmas used to
prove the consistency of the ML estimator are also reported. Section 4 provides
the same information for the Student’s tmodel class. A Supplementary Material
with the proofs of two theorems completes the treatment of the subject.

2 Linear cluster-weighted models

Let Y = (Y1, . . . , Yq)
′ be a q× 1 random vector of absolutely continuous depen-

dent variables and X = (X1, . . . , Xp)
′ be a p × 1 random vector of absolutely

continuous random predictors. Furthermore, let vec(A) be the column vector
obtained by stacking the columns of matrix A one underneath the other, and
v(B) be the column vector obtained from vec(B) by eliminating all supradiag-
onal elements of a symmetric matrix B (thus, v(B) contains only the distinct
elements of B) (for more details see, e.g., Horn and Johnson, 1990).

Definition 1. The (p+q)×1 random vector (X′,Y′)′ follows a Gaussian linear
cluster-weighted model of order G if its probability density function (p.d.f.) has
the form

fN (x,y; θ) =

G
∑

g=1

πgφp(x;µg,Σg)φq(y|x;γg,Γg), (x,y) ∈ R
p+q, (1)

for some θ ∈ Θ, where φl(·; ξ,Ξ) denotes the p.d.f. of an l-dimensional Gaus-
sian random vector with expected value ξ and positive definite covariance ma-
trix Ξ, πg > 0 ∀g,

∑G

g=1
πg = 1, γg = λg + Bgx, with Bg denoting a

q × p matrix with real elements ∀g, π = (π1, . . . , πG−1)
′, λ = (λ′

1, . . . ,λ
′
G)

′,
B = (vec(B1)

′, . . . , vec(BG)
′)′, Γ = (v(Γ1)

′, . . . , v(ΓG)
′)′, µ = (µ′

1, . . . ,µ
′
G)

′,
Σ = (v(Σ1)

′, . . . , v(ΣG)
′)′, and θ = (π′,λ′,B′,Γ′, µ′,Σ′)′.

Definition 2. The (p + q) × 1 random vector (X′,Y′)′ follows a Student’s t

linear cluster-weighted model of order G if its p.d.f. has the form

fT (x,y;ψ) =
G
∑

g=1

πghp(x;µg,Σg, νg)hq(y|x;γg,Γg, κg), (x,y) ∈ R
p+q, (2)

for some ψ ∈ Ψ, where hl(·; ξ,Ξ, ω) denotes the p.d.f. of an l-dimensional
Student’s t random vector with location parameter ξ, positive definite scatter
matrix Ξ, and degrees of freedom ω (see equation (A) in the Supplementary
Material), ψ = (θ′,ν′,κ′), ν = (ν1, . . . , νG)

′, κ = (κ1, . . . , κG)
′ and θ is the

vector introduced in Definition 1.
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Definition 3. The class of Gaussian linear cluster-weighted models of order G

is NG = {fN (x,y; θ), θ ∈ Θ, (x,y) ∈ R
p+q}, where fN (x,y; θ) is defined in

equation (1) and λg 6= λj ∨ vec(Bg) 6= vec(Bj) ∨ v(Σk) 6= v(Σj) for g 6= j.

Definition 4. The class of Student’s t linear cluster-weighted models of order
G is TG = {fT (x,y;ψ),ψ ∈ Ψ, (x,y) ∈ R

p+q}, where fT (x,y; θ) is defined in
equation (2) and νg 6= νj ∨ κg 6= κj ∨ λg 6= λj ∨ vec(Bg) 6= vec(Bj) ∨ v(Σk) 6=
v(Σj) for g 6= j.

Dang et al. (2017) provide a sufficient condition for the identifiability of the
class N in Ω × R

q, where N = {NG, G ∈ N}, and Ω ⊆ R
p has probability

equal to one according to the p-variate Gaussian distribution. Their condition
is summarized as follows.

(C0) The mixture of regression models

G
∑

g=1

αg(x)φq(y|x;γg,Γg), y ∈ R
q,

is identifiable for each fixed x ∈ Ω, where α1(x), . . . , αG(x) are positive
weights summing to one for each x ∈ Ω.

In addition, they prove that, when the condition (C0) holds true, the model
class N is identifiable. As far as the Student’s t model class is concerned, this
condition can be easily modified so as to ensure the identifiability of the class
T in Ω×R

q, where T = {TG, G ∈ N}, and Ω ⊆ R
p has probability equal to one

according to the p-variate Student’s t distribution. The modified condition is
defined as follows.

(C0)∗ The mixture of regression models

G
∑

g=1

αg(x)hq(y|x;γg,Γg, κg), y ∈ R
q,

is identifiable for each fixed x ∈ Ω, where α1(x), . . . , αG(x) are positive
weights summing to one for each x ∈ Ω.

The proof of the identifiability of the model class T under the condition (C0)∗

can be easily obtained from the proof given in Dang et al. (2017) by exploiting
the identifiability of finite mixtures of multivariate Student’s t distributions
(Holzmann et al., 2006).

3 Consistency of the ML estimator under Gaus-

sian models

Let (x′
1,y

′
1)

′, ..., (x′
I ,y

′
I)

′ be I independent and identically distributed (i.i.d.)
sample observations of (X′,Y′)′ under the model defined in equation (1), and
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let θ̂I be the ML estimator of θ based on these observations. Details about the
EM algorithm can be found in Dang et al. (2017). Furthermore, let the true
p.d.f. of (X′,Y′)′ be denoted as g(x,y). The consistency of the ML estimator

θ̂I has been studied for the model class NG = {fN (x,y; θ), θ ∈ Θ̄}, with Θ̄
denoting a compact metric subspace of Θ whose elements fulfil the following
conditions:

(C1) µg ∈ A(ǫ, p) ∀g, where A(ǫ, r) = {a ∈ R
r : ‖a‖ ≤ ǫ}, 0 < ǫ < ∞ and ‖ · ‖

is the Euclidean norm;

(C2) Σg ∈ Dp(a, b) ∀g, where Dp(a, b) denotes the set of the p × p positive
definite matrices with eigenvalues in [a, b], with 0 < a < b < ∞;

(C3) λg ∈ A(η, q) ∀g, with 0 < η < ∞;

(C4) Bg ∈ B(ρ, q, p) ∀g, where B(ρ, q, p) = {B ∈ Mq×p : |||B||| ≤ ρ}, with
Mq×p denoting the set of q × p matrices with real elements, 0 < ρ < ∞
and ||| · ||| being the following matrix norm:

|||B||| = sup {‖Bx‖ : x ∈ R
p with ‖x‖ = 1} , ∀ B ∈ Mq×p.

(C5) Γg ∈ Dq(c, d) ∀g, with 0 < c < d < ∞.

Furthermore, it is supposed that

(C6) a unique model M0 ∈ NG0 exists such that g(x,y) = fN (x,y; θ̆M0) for
some parameter value θ̆M0 ∈ Θ̄, where the order G0 of model M0 is
known.

For the proof of the consistency of θ̂I some preliminary results are required.
They are summarized in Theorem 1 and Lemmas 1 and 2. Theorem 1 guarantees
the existence and the g−integrability of an envelope function eN (x,y) for the
model class NG. Lemma 1 ensures that E(ln[fN (X,Y; θ)]) has a unique max-
imum at θ0, where θ0 denotes the true value of the model parameters. Lemma 2
allows to state that E(ln[fN (X,Y; θ)]) is continuous, and 1

I

∑I

i=1
ln[fN (xi,yi; θ)]

uniformly converges in probability to E(ln[fN (X,Y; θ)]). Finally, the consis-

tency of θ̂I is given by Corollary 1. Proofs of the two lemmas and the corollary
are based on some general theorems that hold true for the extremum estima-
tors of parametric models in the presence of i.i.d. random variables (Newey and
McFadden, 1994). The regularity conditions (C1)-(C6) have been defined so
as to ensure that the general theorems in Newey and McFadden (1994) can be
applied to the ML estimator of the specific model class examined in this paper.
The proof of Theorem 1 is reported in the Supplementary Material.

Theorem 1. Given the model class NG = {fN (x,y; θ), θ ∈ Θ̄} and the condi-
tions (C1)-(C6), there exists a function eN (x,y), (x,y) ∈ R

p+q, such that

| ln[fN (x,y; θ)]| ≤ eN (x,y) ∀θ ∈ Θ̄, ∀(x,y) ∈ R
p+q, (3)

∫

eN (x,y)g(x,y)dxdy < ∞. (4)
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Lemma 1. If conditions (C0)-(C6) hold true and θ0 ∈ Θ̄, then E (ln[fN (X,Y; θ)])
has a unique maximum at θ0.

Proof. Condition (C0) ensures that θ0 is identified. Under the conditions (C1)-
(C6), from Theorem 1 it follows that

E {| ln[fN (X,Y; θ)]|} ≤ E [eN (X,Y)] ∀θ ∈ Θ̄.

Finally, Lemma 2.2 of Newey and McFadden (1994) leads to the result given in
Lemma 1.

Lemma 2. If (x1,y1), . . . , (xI ,yI) are i.i.d. sample observations of (X,Y)
under the model defined in equation (1), Θ̄ is compact and the conditions (C1)-
(C6) are fulfilled, then E (ln[fN (X,Y; θ)]) is continuous and

sup
θ∈Θ̄

∣

∣

∣

∣

∣

1

I

I
∑

i=1

ln[fN (xi,yi; θ)]− E [ln fN (X,Y; θ)]

∣

∣

∣

∣

∣

p
−→ 0. (5)

Proof. The results given in Lemma 2 follow immediately from Theorem 1 and
Lemma 2.4 of Newey and McFadden (1994).

Corollary 1. Given conditions (C0)-(C6) and if Θ̄ is compact, then the fol-
lowing convergence in probability holds true:

θ̂I
p
−→ θ0. (6)

Proof. The result (10) follows immediately from Theorem 1 and Theorem 2.1,
Lemmas 2.2 and 2.4 of Newey and McFadden (1994).

4 Consistency of the ML estimator under Stu-

dent’s t models

Suppose that (x′
1,y

′
1)

′, ..., (x′
I ,y

′
I)

′ are i.i.d. sample observations of (X′,Y′)′

under the model defined in equation (2). Furthermore, let ψ̂I be the ML esti-

mator of ψ based on these observations. The consistency of ψ̂I has been proven
for the model class TG = {fT (x,y;ψ),ψ ∈ Ψ̄}, where Ψ̄ is a compact met-
ric subspace of Ψ whose elements fulfil the conditions (C1)-(C5) illustrated in
Section 3 and, in addition, the following conditions:
(C7) ν ∈ F(δ, τ, G), κ ∈ F(δ, τ, G), where F(δ, τ, r) = {a = (a1, . . . , ak, . . . , ar)

′ ∈
R

r : 2 + δ ≤ ak ≤ τ, k = 1, . . . , r}, 0 < δ < ∞, 2 + δ < τ < ∞;

(C8) a unique model M0 ∈ TG0 exists such that g(x,y) = fT (x,y; ψ̆M0) for
some parameter value ψ̆M0 ∈ Ψ̄, where the order G0 of model M0 is
known.
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The theoretical result concerning the consistency of ψ̂I , which is given in
Corollary 2, is based on the preliminary results summarised in Theorem 2 and
Lemmas 3-4. A proof of Theorem 2 can be found in the Supplementary Material.
The proofs of Lemma 4 and Corollary 2 are similar to the ones provided in
Section 3 for Lemma 2 and Corollary 1 and, thus, are omitted.

Theorem 2. Given the model class TG = {fT (x,y;ψ),ψ ∈ Ψ̄} and the con-
ditions (C1)-(C5) and (C7)-(C8), there exists a function eT (x,y), (x,y) ∈
R

p+q, such that

| ln[fT (x,y;ψ)]| ≤ eT (x,y) ∀ψ ∈ Ψ̄, ∀(x,y) ∈ R
p+q, (7)

∫

eT (x,y)g(x,y)dxdy < ∞. (8)

Lemma 3. If conditions (C0)∗-(C5) and (C7)-(C8) hold true and ψ0 ∈ Ψ̄,
then E (ln[fT (X,Y;ψ)]) has a unique maximum at ψ0.

Proof. Condition (C0)∗ ensures that ψ0 is identified. Under the conditions
(C1)-(C5) and (C7)-(C8), from Theorem 2 it follows that

E {| ln[fT (X,Y;ψ)]|} ≤ E [eT (X,Y)] ∀ψ ∈ Ψ̄.

Finally, Lemma 2.2 of Newey and McFadden (1994) leads to the result given in
Lemma 1.

Lemma 4. If (x1,y1), . . . , (xI ,yI) are i.i.d. sample observations of (X,Y)
under the model defined in equation (2), Ψ̄ is compact and the conditions (C1)-
(C5) and (C7)-(C8) are fulfilled, then E (ln[fT (X,Y;ψ)]) is continuous and

sup
ψ∈Ψ̄

∣

∣

∣

∣

∣

1

I

I
∑

i=1

ln[fT (xi,yi;ψ)]− E [ln fT (X,Y;ψ)]

∣

∣

∣

∣

∣

p
−→ 0. (9)

Corollary 2. Given the conditions (C0)∗-(C5) and (C7)-(C8) and if Ψ̄ is
compact, then the following convergence in probability holds true:

ψ̂I

p
−→ ψ0. (10)
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A Some results about Student’s t distributions and

the gamma function

The p.d.f. of an l−dimensional Student’s t random vector Z is given by

hl (z; ξ,Ξ, ω) =
Γ
(

ω+l
2

)

Γ
(

ω
2

)

ω
l
2π

l
2 |Ξ|

1

2

(

1 +
1

ω
‖z− ξ‖2

Ξ

)−ω+l
2

, z ∈ R
l, (A)

where ξ is a location vector, Ξ is a positive definite scatter matrix, ω represents the degrees
of freedom and ‖z− ξ‖2

Ξ
= (z− ξ)′ Ξ−1 (z− ξ).

The expected value of Z is given by ξ, provided that ω > 1. Furthermore, if ω > 2,
then the covariance matrix of Z is equal to ω

ω−2
Ξ (see, for example, Kots and Nadarajah,

2004). Finally, according to Rong et al. (2012),

E [Z′Z] =

∫

‖z‖2hl (z; ξ,Ξ, ω) dz = ‖ξ‖2 +
ω

ω − 2
tr (Ξ) . (B)

The p.d.f. in equation (A) involves the gamma function Γ(c) =
∫∞

0
tc−1e−tdt. It is easy to

show that, if 2 + δ ≤ ω ≤ τ (0 < δ < +∞, 2 + δ < τ < ∞) and l ≥ 1, then

0 < Γ

(

3 + δ

2

)

≤ Γ

(

ω + l

2

)

≤ Γ

(

τ + l

2

)

< +∞, (C)

∗The authors have no competing interests to declare.
†Corresponding author. Department of Statistical Sciences, University of Bologna, via delle Belle Arti

41, 40126 Bologna, Italy. E-mail address: gabriele.soffritti@unibo.it
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0 < Γ (c∗) ≤ Γ
(ω

2

)

≤ max
{

1,Γ
(τ

2

)}

< +∞, (D)

where c∗ ∼= 1.46163 (see, for example, Deming and Colcord, 1935; Davis, 1970).
Taking into account inequalities (C) and (D) and considering that, for any positive

definite matrix Ξ and any 2 + δ ≤ ω ≤ τ ,

(

1 +
1

ω
‖z− ξ‖2

Ξ

)−ω+l
2

≤ 1 ∀z

and

−
ω + l

2
ln

(

1 +
1

ω
‖z− ξ‖2

Ξ

)

≥ −
ω + l

2ω
‖z− ξ‖2

Ξ
≥ −

τ + l

4 + 2δ
‖z− ξ‖2

Ξ
∀z,

it is easy to show that

ln[hl (z; ξ,Ξ, ω)] ≤ ln Γ

(

τ + l

2

)

− ln Γ (c∗)]−
l

2
ln[π(2 + δ)]−

1

2
ln |Ξ| (E)

and

ln[hl (z; ξ,Ξ, ω)] ≥ ln Γ

(

3 + δ

2

)

−max
{

0, ln Γ
(τ

2

)}

−
l

2
ln τπ−

1

2
ln |Ξ|−

τ + l

4 + 2δ
‖z−ξ‖2

Ξ
.

(F)

B Proof of Theorem 1

The proof is composed of two parts: (i) the explicit expression of the envelope function
eN (x,y) is derived (first result); (ii) eN (x,y) is shown to be a g-integrable function (second
result). Both parts exploit arguments similar to the ones used in Maugis et al. (2007).

Let ‖x − µg‖
2
Σg

=
(

x− µg

)′
Σ−1

g

(

x− µg

)

, and ‖y − γg‖
2
Γg

=
(

y − γg

)′
Γ−1

g

(

y − γg

)

.

Since Σg and Γg are positive definite, ‖x − µg‖
2
Σg

≥ 0 ∀x, and ‖y − γg‖
2
Γg

≥ 0 ∀y.

Furthermore, |Σg|
− 1

2 ≤ a−
p

2 and |Γg|
− 1

2 ≤ c−
q

2 , where a and c denote the lower bound for
the eigenvalues of Σg and Γg, respectively, ∀g (see Maugis et al., 2007, lemma 3). Then,

ln[fN (x,y; θ)] = ln

[

G
∑

g=1

πgφp

(

x;µg,Σg

)

φq

(

y|x;γg,Γg

)

]

= ln

[

G
∑

g=1

πg|2πΣg|
− 1

2 exp

(

−
‖x− µg‖

2
Σg

2

)

|2πΓg|
− 1

2 exp

(

−
‖y − γg‖

2
Γg

2

)]

≤ ln

[

G
∑

g=1

πg(2πa)
−

p

2 (2πc)−
q

2

]

(G)

≤ −
p

2
ln(2πa)−

q

2
ln(2πc), (H)

where the last inequality is obtained by exploiting the result
∑K

k=1
πk = 1. Thus, UN =

−p

2
ln(2πa)− q

2
ln(2πc) is an upper bound of ln[fN (x,y; θ)] ∀(x,y) ∈ R

p+q, ∀θ ∈ Θ̄.

2



The lower bound of this function can be obtained as follows. Using the concavity of the
logarithm function it is possible to write:

ln[fN (x,y; θ)] ≥

G
∑

g=1

πg ln

[

(2π)−
p+q

2 |Σg|
− 1

2 exp

(

−
‖x− µg‖

2
Σg

2

)

|Γg|
− 1

2 exp

(

−
‖y − γg‖

2
Γg

2

)]

= −
p + q

2
ln(2π)−

1

2

G
∑

g=1

πg

[

ln(|Σg|) + ‖x− µg‖
2

Σg
+ ln(|Γg|) + ‖y− γg‖

2

Γg

]

.(I)

Furthermore, recalling that γg = λg +Bgx, it is possible to write

‖y− λg −Bgx‖
2

Γg
≤

1

c
‖y− (λg +Bgx)‖

2 (J)

≤
2

c

(

‖y‖2 + ‖λg +Bgx‖
2
)

(K)

≤
2

c
‖y‖2 +

4

c

(

‖λg‖
2 + ‖Bgx‖

2
)

(L)

≤
2

c
‖y‖2 +

4

c
‖λg‖

2 +
4

c
|||Bg|||

2‖x‖2 (M)

≤
2

c
‖y‖2 +

4

c
η2 +

4

c
ρ2‖x‖2 (N)

where the inequality (J) is a consequence of the lemma 3 in Maugis et al. (2007); inequali-
ties (K) and (L) are obtained from the parallelogram identity (see, e.g. Horn and Johnson,
1990, p. 263); inequalities (M) and (N) hold because of the conditions (C3)-(C4) on λg

and Bg.
In a similar way, by exploiting the condition (C1) on µg it is possible to write

‖x− µg‖
2

Σg
≤

1

a
‖x− µg‖

2

≤
2

a

(

‖x‖2 + ‖µg‖
2
)

≤
2

a
‖x‖2 +

2

a
ǫ2. (O)

Using lemma 3 in Maugis et al. (2007) and combining the results given in equations (I),
(N) and (O) leads to the following lower bound for ln[fN (x,y; θ)]:

LN = −
p + q

2
ln(2π)−

p ln(b)

2
−

q ln(d)

2
−

4

c
η2 −

2

a
ǫ2 −

2

c
‖y‖2 −

(

2

a
+

4

c
ρ2
)

‖x‖2. (P)

Thus, ∀(x,y) ∈ R
p+q and ∀θ ∈ Θ̄, it results that LN ≤ ln[fN (x,y; θ)] ≤ UN ,

∀fN (x,y; θ) ∈ FG. As a consequence of above, it is possible to write

| ln[fN (x,y; θ)]| ≤ C1(a, b, c, d, ǫ, η, p, q) + C2(c)‖y‖
2 + C3(a, c, ρ)‖x‖

2, (Q)

defining the envelope function eN (x,y), where C1(.), C2(.) and C3(.) are positive constants.
This concludes the proof of the first result.
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The g−integrability of the envelope function eN (x,y) can be proved by showing that
∫

‖(x,y)‖2g(x,y)dxdy < ∞. By exploiting the condition (C6), it is possible to write

∫

‖(x,y)‖2g(x,y)dxdy =

∫

(‖x‖2 + ‖y‖2)fN (x,y; θ̆M0
)dxdy

=

∫

(‖x‖2 + ‖y)‖2)

G0

∑

g=1

π̆gφp(x; µ̆g, Σ̆g)φq(y|x; γ̆g, Γ̆g)dydx

=
G0

∑

g=1

π̆g

∫

‖x‖2φp(x; µ̆g, Σ̆g)dx

+

G0

∑

g=1

π̆g

∫

‖y‖2φp(x; µ̆g, Σ̆g)φq(y|x; γ̆g, Γ̆g)dydx. (R)

As far as the first term in the right part of the equation (R) is concerned, using lemmas
3 and 4 in Maugis et al. (2007) it results that

G0

∑

g=1

π̆g

∫

‖x‖2φp(x; µ̆g, Σ̆g)dx ≤ 2

G0

∑

g=1

π̆g

[

‖µ̆g‖
2 + tr(Σ̆g)

]

≤ 2
G0

∑

g=1

π̆g

(

ǫ2 + bp
)

≤ 2
(

ǫ2 + bp
)

. (S)

As far as the second term in the right part of the equation (R) is concerned, let the
integral within such term be denoted as Ag. For this quantity it is possible to write:

Ag =

∫

[

‖y‖2φq(y|x; γ̆g, Γ̆g)dy
]

φp(x; µ̆g, Σ̆g)dx

≤ 2

∫

[

‖γ̆g‖
2 + tr

(

Γ̆g

)]

φp(x; µ̆g, Σ̆g)dx (T)

≤ 2

∫

[

2‖λ̆g‖
2 + 2‖B̆gx‖

2 + dq
]

φp(x; µ̆g, Σ̆g)dx (U)

≤ 2

∫

[

2η2 + 2ρ2‖x‖2 + dq
]

φp(x; µ̆g, Σ̆g)dx (V)

≤ 4η2 + 2dq + 4ρ2
∫

‖x‖2φp(x; µ̆g, Σ̆g)dx (W)

≤ 4η2 + 2dq + 8ǫ2ρ2 + 8bpρ2, (X)

where inequalities (T) and (U) are obtained using lemmas 3 and 4 given in Maugis et al.
(2007), and the final inequality exploits the result obtained in equation (S).

Combining this result with the equation (R) makes it possible to write
∫

‖(x,y)‖2g(x,y)dydx ≤ 2ǫ2(1 + 4ρ2) + 2bp(1 + 4ρ2) + 4η2 + 2dq < ∞.
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This concludes the proof of the second result.

C Proof of Theorem 2

The proof of Therorem 2 is essentially similar to the one of Theorem 1. In particular,
the explicit expression of the envelope function eT (x,y) can be obtained by a straightfor-
ward modification of the first part of the proof of Theorem 1. This modification exploits
inequalities (E) and (F). Namely, by applying inequality (E) to any hp(x;µg,Σg, νg) and
hq(y|x;γg,Γg, κg) (g = 1, . . . , G) and following arguments similar to those leading to the
upper bounds for ln[fN (x,y;ψ)] given by equation (H), the following upper bound for
ln[fT (x,y;ψ)] can be obtained:

UT = lnΓ

(

τ + p

2

)

+ lnΓ

(

τ + q

2

)

− 2 lnΓ (c∗)−
p

2
ln [πa(2 + δ)]−

q

2
ln [πc(2 + δ)] .

Similarly, by exploiting inequality (F) to adapt equation (I) and, consequently, equation
(P), it is possible to show that

LT = 2 lnΓ

(

3 + δ

2

)

−max
{

0, 2 lnΓ
(τ

2

)}

−
p

2
ln(τπb)−

q

2
ln(τπd)−

4(τ + q)

c(4 + 2δ)
η2 +

−
2(τ + p)

a(4 + 2δ)
ǫ2 −

2(τ + q)

c(4 + 2δ)
‖y‖2 −

(

2(τ + p)

a(4 + 2δ)
+

4(τ + q)

c(4 + 2δ)
ρ2
)

‖x‖2

is a lower bound ln[fT (x,y;ψ)]. Finally, UT and LT can be combined to derive an expres-
sion for eT (x,y), that has a structure similar to equation (Q), with non-negative constants
C1(.), C2(.) and C3(.) now depending also on τ and δ.

As for Theorem 1, the second part of the proof of Theorem 2 concerns the g−integrability
of eT (x,y). This requires only minor changes in equations (R) to (X), by using equation (B)
instead of lemma 4 in Maugis et al. (2007). In particular, as condition (C7) implies

ω

ω − 2
≤

2 + δ

δ
∀ω ≥ 2 + δ,

inequality (S) can be replaced by

G0

∑

g=1

π̆g

∫

‖x‖2hp(x; µ̆g, Σ̆g, ν̆g)dx ≤ 2

(

ǫ2 +
2 + δ

δ
bp

)

< +∞,

while inequality (X) becomes

∫

[

‖y‖2hq(y|x; γ̆g, Γ̆g, κ̆g)dy
]

hp(x; µ̆g, Σ̆g, ν̆g)dx ≤ 4η2 +
(4 + 2δ)dq

δ
+

+8ǫ2ρ2 +
(16 + 8δ)bp

δ
ρ2 < +∞.
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