Recent research suggests alteration of visual working memory capacity by modulation of parietal theta frequency via transcranial alternating current stimulation (tACS). However, it remains to be clarified whether this effect is partly driven by co-stimulation of prefrontal cortex and subcortical structures. It was hypothesized that focal tACS over the parietal lobe without additional prefrontal or subcortical stimulation should lead to similar effects as reported in the literature. Healthy, young participants were tested on a visual working memory paradigm while receiving either focal parietal tACS at 4 Hz, at 7 Hz or sham stimulation. Focal right posterior 4 Hz tACS led to increased working memory capacity strictly for the visual hemifield contralateral to stimulation. Exclusive stimulation of posterior cortex by 4 Hz tACS replicates effects recently reported in literature, confirming that stimulation of the prefrontal cortex or subcortical structures are not a primary driver of these observations.

Slow Theta tACS of the Right Parietal Cortex Enhances Contralateral Visual Working Memory Capacity

Romei V.;
2019

Abstract

Recent research suggests alteration of visual working memory capacity by modulation of parietal theta frequency via transcranial alternating current stimulation (tACS). However, it remains to be clarified whether this effect is partly driven by co-stimulation of prefrontal cortex and subcortical structures. It was hypothesized that focal tACS over the parietal lobe without additional prefrontal or subcortical stimulation should lead to similar effects as reported in the literature. Healthy, young participants were tested on a visual working memory paradigm while receiving either focal parietal tACS at 4 Hz, at 7 Hz or sham stimulation. Focal right posterior 4 Hz tACS led to increased working memory capacity strictly for the visual hemifield contralateral to stimulation. Exclusive stimulation of posterior cortex by 4 Hz tACS replicates effects recently reported in literature, confirming that stimulation of the prefrontal cortex or subcortical structures are not a primary driver of these observations.
Bender M.; Romei V.; Sauseng P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/730190
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact