Childhood malnutrition is associated with high morbidity and mortality globally1. Undernourished children are more likely to experience cognitive, physical, and metabolic developmental impairments that can lead to later cardiovascular disease, reduced intellectual ability and school attainment, and reduced economic productivity in adulthood2. Child growth failure (CGF), expressed as stunting, wasting, and underweight in children under five years of age (0–59 months), is a specific subset of undernutrition characterized by insufficient height or weight against age-specific growth reference standards3–5. The prevalence of stunting, wasting, or underweight in children under five is the proportion of children with a height-for-age, weight-for-height, or weight-for-age z-score, respectively, that is more than two standard deviations below the World Health Organization’s median growth reference standards for a healthy population6. Subnational estimates of CGF report substantial heterogeneity within countries, but are available primarily at the first administrative level (for example, states or provinces)7; the uneven geographical distribution of CGF has motivated further calls for assessments that can match the local scale of many public health programmes8. Building from our previous work mapping CGF in Africa9, here we provide the first, to our knowledge, mapped high-spatial-resolution estimates of CGF indicators from 2000 to 2017 across 105 low- and middle-income countries (LMICs), where 99% of affected children live1, aggregated to policy-relevant first and second (for example, districts or counties) administrative-level units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the ambitious World Health Organization Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and progress exist across and within countries; our maps identify high-prevalence areas even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where the highest-need populations reside, these geospatial estimates can support policy-makers in planning interventions that are adapted locally and in efficiently directing resources towards reducing CGF and its health implications.

Mapping child growth failure across low- and middle-income countries

Violante F. S.;
2020

Abstract

Childhood malnutrition is associated with high morbidity and mortality globally1. Undernourished children are more likely to experience cognitive, physical, and metabolic developmental impairments that can lead to later cardiovascular disease, reduced intellectual ability and school attainment, and reduced economic productivity in adulthood2. Child growth failure (CGF), expressed as stunting, wasting, and underweight in children under five years of age (0–59 months), is a specific subset of undernutrition characterized by insufficient height or weight against age-specific growth reference standards3–5. The prevalence of stunting, wasting, or underweight in children under five is the proportion of children with a height-for-age, weight-for-height, or weight-for-age z-score, respectively, that is more than two standard deviations below the World Health Organization’s median growth reference standards for a healthy population6. Subnational estimates of CGF report substantial heterogeneity within countries, but are available primarily at the first administrative level (for example, states or provinces)7; the uneven geographical distribution of CGF has motivated further calls for assessments that can match the local scale of many public health programmes8. Building from our previous work mapping CGF in Africa9, here we provide the first, to our knowledge, mapped high-spatial-resolution estimates of CGF indicators from 2000 to 2017 across 105 low- and middle-income countries (LMICs), where 99% of affected children live1, aggregated to policy-relevant first and second (for example, districts or counties) administrative-level units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the ambitious World Health Organization Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and progress exist across and within countries; our maps identify high-prevalence areas even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where the highest-need populations reside, these geospatial estimates can support policy-makers in planning interventions that are adapted locally and in efficiently directing resources towards reducing CGF and its health implications.
2020
Kinyoki D.K.; Osgood-Zimmerman A.E.; Pickering B.V.; Schaeffer L.E.; Marczak L.B.; Lazzar-Atwood A.; Collison M.L.; Henry N.J.; Abebe Z.; Adamu A.A.; Adekanmbi V.; Ahmadi K.; Ajumobi O.; Al-Eyadhy A.; Al-Raddadi R.M.; Alahdab F.; Alijanzadeh M.; Alipour V.; Altirkawi K.; Amini S.; Andrei C.L.; Antonio C.A.T.; Arabloo J.; Aremu O.; Asadi-Aliabadi M.; Atique S.; Ausloos M.; Avila M.; Awasthi A.; Quintanilla B.P.A.; Azari S.; Badawi A.; Barnighausen T.W.; Bassat Q.; Baye K.; Bedi N.; Bekele B.B.; Bell M.L.; Bhattacharjee N.V.; Bhattacharyya K.; Bhattarai S.; Bhutta Z.A.; Biadgo B.; Bikbov B.; Briko A.N.; Britton G.; Burstein R.; Butt Z.A.; Car J.; Castaneda-Orjuela C.A.; Castro F.; Cerin E.; Chipeta M.G.; Chu D.-T.; Cork M.A.; Cromwell E.A.; Cuevas-Nasu L.; Dandona L.; Dandona R.; Daoud F.; Gupta R.D.; Weaver N.D.; Leo D.D.; Neve J.-W.D.; Deribe K.; Desalegn B.B.; Deshpande A.; Desta M.; Diaz D.; Dinberu M.T.; Doku D.T.; Dubey M.; Duraes A.R.; Dwyer-Lindgren L.; Earl L.; Effiong A.; Zaki M.E.S.; Tantawi M.E.; El-Khatib Z.; Eshrati B.; Fareed M.; Faro A.; Fereshtehnejad S.-M.; Filip I.; Fischer F.; Foigt N.A.; Folayan M.O.; Fukumoto T.; Gebrehiwot T.T.; Gezae K.E.; Ghajar A.; Gill P.S.; Gona P.N.; Gopalani S.V.; Grada A.; Guo Y.; Haj-Mirzaian A.; Haj-Mirzaian A.; Hall J.B.; Hamidi S.; Henok A.; Prado B.H.; Herrero M.; Herteliu C.; Hoang C.L.; Hole M.K.; Hossain N.; Hosseinzadeh M.; Hu G.; Islam S.M.S.; Jakovljevic M.; Jha R.P.; Jonas J.B.; Jozwiak J.J.; Kahsay A.; Kanchan T.; Karami M.; Kasaeian A.; Khader Y.S.; Khan E.A.; Khater M.M.; Kim Y.J.; Kimokoti R.W.; Kisa A.; Kochhar S.; Kosen S.; Koyanagi A.; Krishan K.; Defo B.K.; Kumar G.A.; Kumar M.; Lad S.D.; Lami F.H.; Lee P.H.; Levine A.J.; Li S.; Linn S.; Lodha R.; El Razek H.M.A.; Abd El Razek M.M.; Majdan M.; Majeed A.; Malekzadeh R.; Malta D.C.; Mamun A.A.; Mansournia M.A.; Martins-Melo F.R.; Masaka A.; Massenburg B.B.; Mayala B.K.; Mejia-Rodriguez F.; Melku M.; Mendoza W.; Mensah G.A.; Miazgowski T.; Miller T.R.; Mini G.K.; Mirrakhimov E.M.; Moazen B.; Darwesh A.M.; Mohammed S.; Mohebi F.; Mokdad A.H.; Moodley Y.; Moradi G.; Moradi-Lakeh M.; Moraga P.; Morrison S.D.; Mosser J.F.; Mousavi S.M.; Mueller U.O.; Murray C.J.L.; Mustafa G.; Naderi M.; Naghavi M.; Najafi F.; Nangia V.; Ndwandwe D.E.; Negoi I.; Ngunjiri J.W.; Nguyen H.L.T.; Nguyen L.H.; Nguyen S.H.; Nie J.; Nnaji C.A.; Noubiap J.J.; Shiadeh M.N.; Nyasulu P.S.; Ogbo F.A.; Olagunju A.T.; Olusanya B.O.; Olusanya J.O.; Ortiz-Panozo E.; Otstavnov S.S.; P. A M.; Pana A.; Pandey A.; Pati S.; Patil S.T.; Patton G.C.; Perico N.; Pigott D.M.; Pirsaheb M.; Piwoz E.G.; Postma M.J.; Pourshams A.; Prakash S.; Quintana H.; Radfar A.; Rafiei A.; Rahimi-Movaghar V.; Rai R.K.; Rajati F.; Rawaf D.L.; Rawaf S.; Rawat R.; Remuzzi G.; Renzaho A.M.N.; Rios-Gonzalez C.; Roever L.; Ross J.M.; Rostami A.; Sadat N.; Safari Y.; Safdarian M.; Sahebkar A.; Salam N.; Salamati P.; Salimi Y.; Salimzadeh H.; Samy A.M.; Sartorius B.; Sathian B.; Schipp M.F.; Schwebel D.C.; Senbeta A.M.; Sepanlou S.G.; Shaikh M.A.; Levy T.S.; Shamsi M.; Sharafi K.; Sharma R.; Sheikh A.; Shil A.; Silva D.A.S.; Singh J.A.; Sinha D.N.; Soofi M.; Sudaryanto A.; Sufiyan M.B.; Tabares-Seisdedos R.; Tadesse B.T.; Temsah M.-H.; Terkawi A.S.; Tessema Z.T.; Thorne-Lyman A.L.; Tovani-Palone M.R.; Tran B.X.; Tran K.B.; Ullah I.; Uthman O.A.; Vaezghasemi M.; Vaezi A.; Valdez P.R.; Vanderheide J.; Veisani Y.; Violante F.S.; Vlassov V.; Vu G.T.; Vu L.G.; Waheed Y.; Walson J.L.; Wang Y.; Wang Y.-P.; Wangia E.N.; Werdecker A.; Xu G.; Yamada T.; Yisma E.; Yonemoto N.; Younis M.Z.; Yousefifard M.; Yu C.; Zaman S.B.; Zamani M.; Zhang Y.; Kassebaum N.J.; Hay S.I.
File in questo prodotto:
File Dimensione Formato  
Kynyoki-Nature 2020_pp1-7.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 7.08 MB
Formato Adobe PDF
7.08 MB Adobe PDF Visualizza/Apri
41586_2019_1878_MOESM1_ESM.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 10.62 MB
Formato Adobe PDF
10.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/729944
Citazioni
  • ???jsp.display-item.citation.pmc??? 48
  • Scopus 103
  • ???jsp.display-item.citation.isi??? 87
social impact