Article

Mapping child growth failure across low- and middle-income countries

https://doi.org/10.1038/s41586-019-1878-8

Received: 16 November 2018

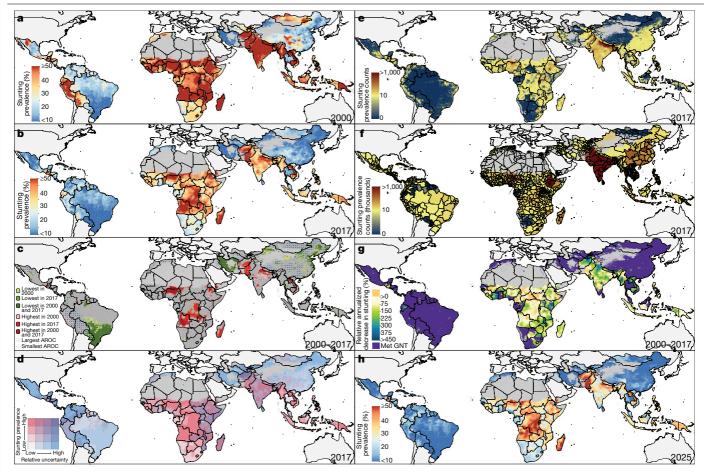
Accepted: 14 November 2019

Published online: 8 January 2020

Open access

Local Burden of Disease Child Growth Failure Collaborators*

Childhood malnutrition is associated with high morbidity and mortality globally¹. Undernourished children are more likely to experience cognitive, physical, and metabolic developmental impairments that can lead to later cardiovascular disease, reduced intellectual ability and school attainment, and reduced economic productivity in adulthood². Child growth failure (CGF), expressed as stunting, wasting, and underweight in children under five years of age (0-59 months), is a specific subset of undernutrition characterized by insufficient height or weight against age-specific growth reference standards³⁻⁵. The prevalence of stunting, wasting, or underweight in children under five is the proportion of children with a height-for-age, weight-for-height, or weight-for-age z-score, respectively, that is more than two standard deviations below the World Health Organization's median growth reference standards for a healthy population⁶. Subnational estimates of CGF report substantial heterogeneity within countries, but are available primarily at the first administrative level (for example, states or provinces)⁷; the uneven geographical distribution of CGF has motivated further calls for assessments that can match the local scale of many public health programmes⁸. Building from our previous work mapping CGF in Africa⁹, here we provide the first, to our knowledge, mapped highspatial-resolution estimates of CGF indicators from 2000 to 2017 across 105 low- and middle-income countries (LMICs), where 99% of affected children live¹, aggregated to policy-relevant first and second (for example, districts or counties) administrativelevel units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the ambitious World Health Organization Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and progress exist across and within countries; our maps identify high-prevalence areas even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where the highest-need populations reside, these geospatial estimates can support policy-makers in planning interventions that are adapted locally and in efficiently directing resources towards reducing CGF and its health implications.


Despite improvements in nearly all LMICs, stunting remained the most widespread and prevalent indicator of CGF throughout the study period. Overall, estimated childhood stunting prevalence across LMICs decreased from 36.9% (95% uncertainty interval, 32.8–41.4%) in 2000 to 26.6% (21.5–32.4%) in 2017. Progress was particularly noticeable in Central America and the Caribbean, Andean South America, North Africa, and East Asia regions, and in some coastal central and western sub-Saharan African (SSA) countries, where most areas with estimated stunting prevalence of at least 50% in 2000 had reduced to 30% or less by 2017 (Fig. 1a, b). By 2017, zones with the highest prevalence of stunting primarily persisted throughout much of the SSA, Central and South Asia, and Oceania regions, where large areas had estimated levels of at least 40%, such as in the first administrative-level units of Nigeria's Jigawa state (60.6% (51.5–69.7%)), Burundi's Karuzi province (60.0%

 $\begin{array}{l} (51.4-67.5\%)), India's Uttar Pradesh state (49.0\% (48.5-49.5\%)), and Laos's Houaphan province (58.3\% (50.7-66.8\%)) (Extended Data Fig. 1). In 2017, Guatemala (47.0\% (40.2-54.6\%)), Niger (47.5\% (42.2-53.9\%)), Burundi (54.2\% (46.3-61.2\%)), Madagascar (49.8\% (43.2-57.2\%)), Timor-Leste (49.8\% (43.4-56.2\%)), and Yemen (45.4\% (38.8-51.5\%)) had the highest national-level stunting prevalence. \\ \end{array}$

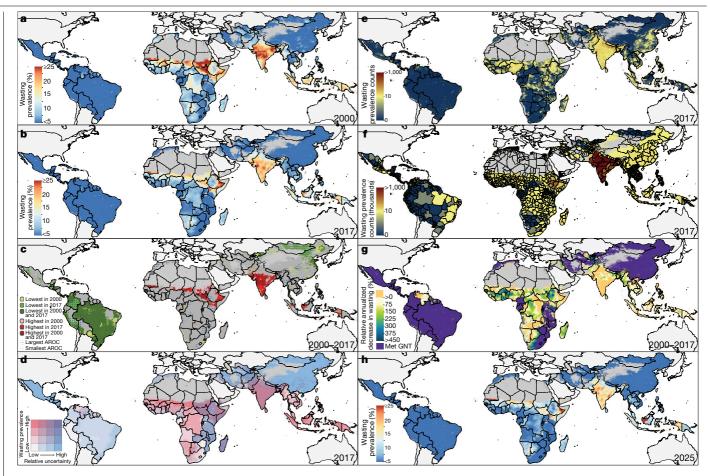
Even within the aforementioned regions where reductions were most evident, local-level estimates revealed communities in which levels still approached those seen in SSA and South Asia; areas in southern Mexico and central Ecuador had estimated stunting prevalence of at least 40%, and areas in western Mongolia reached at least 30%. Wide within-country disparities were apparent in several instances, indicating large areas left behind by the general pace of progress that require attention (Fig. 1a, b). Although most countries successfully reduced

*A list of participants and their affiliations appears in the online version of the paper.

Article

Fig. 1 | **Prevalence of stunting in children under five in LMICs (2000–2017)** and progress towards 2025. a, b, Prevalence of stunting in children under five at the 5 × 5-km resolution in 2000 (a) and 2017 (b). c, Overlapping populationweighted tenth and ninetieth percentiles (lowest and highest) of 5 × 5-km grid cells and AROC in stunting, 2000–2017. d, Overlapping population-weighted quartiles of stunting prevalence and relative 95% uncertainty in 2017.

stunting prevalence, subnational inequalities (disparities between second administrative-level units (henceforth 'units')) remained widespread globally–especially evident in Vietnam, Honduras, Nigeria, and India (Extended Data Fig. 2). Among the top quintile of widest disparities, Indonesia experienced a twofold difference in stunting levels in 2017, ranging from 21.0% (16.2–27.0%) in Kota Yogyakarta regency (Yogyakarta province) to 51.5% (40.6–62.3%) in Sumba Barat regency (Nusa Tenggara Timur province). Stunting levels varied fourfold in Nigeria, ranging from 14.7% (9.1–21.0%) in Surulere Local Government Area (Lagos state) to 64.2% (54.2–74.6%) in Gagarawa Local Government Area (Jigawa state) in 2017.


Evaluated from estimates of population-weighted prevalence for areas with the highest and lowest estimated prevalence of stunting (ninetieth and tenth percentiles, respectively), locations in central Chad, Pakistan, and Afghanistan, in northeastern Angola, and throughout the Democratic Republic of the Congo and Madagascar had among the lowest annualized rates of change (AROC), indicating stagnation or increase over the study period (Fig. 1c); in 2017, these countries also had large geographical areas among the most highly prevalent for stunting. By contrast, areas scattered throughout Peru, northwestern Mexico, and eastern Nepal had among the highest stunting levels in 2000, but also the highest rates of decline; by 2017, many of these areas were subsequently no longer in the highest-prevalence decile.

The absolute number of children under five who were stunted was also unequally distributed (Fig. 1e, f), with a large proportion

e, **f**, Number of children under five who were stunted, at the 5 × 5-km (**e**) and first-administrative-unit (**f**) levels. **g**, 2000–2017 annualized decrease in stunting prevalence relative to rates needed during 2017–2025 to meet the WHO GNT. **h**, Grid-cell-level predicted stunting prevalence in 2025. Maps were produced using ArcGIS Desktop 10.6. Interactive visualization tools are available at https://vizhub.healthdata.org/lbd/cgf.

concentrated in a few nations in 2017; overall, 85.1% (84.4–85.7%) of all stunted children under five lived in Africa or Asia. Of the 176.1 million (151.6–203.3 million) children who were stunted in 2017, just over half (50.1% (48.5–52.0%)) lived in only four countries: India (51.5 million (47.7–55.3 million) children; 28.6% (27.1–30.4%) of global stunting), Pakistan (10.7 million (9.3–12.1 million); 6.8% (6.7–6.9%)), Nigeria (11.8 million (10.7–13.0 million); 6.6% (6.4–6.8%)), and China (16.2 million (14.0–18.5 million); 9.0% (9.1–8.9%)). Although China had a low prevalence of national stunting (10.8% (9.1–12.6%)) in 2017, the prevalence was high in India (39.3% (39.1–39.6%)), Pakistan (44.0% (38.4–49.9%)), and Nigeria (38.2% (34.5–42.0%)). Even with moderate levels of stunting (10 to <20%)¹⁰, these highly populous countries would substantially contribute to the global share owing to their population size, and reducing their levels would markedly decrease the number of stunted children.

Childhood wasting was less widespread than stunting (Fig. 2a, b), affecting 8.4% (7.9–9.9%) of children under five in LMICs in 2000, and 6.4% (4.9–7.9%) by 2017. Wasting reached critical levels (at least 15%)¹¹ nationally in 13 LMICs in 2000 and 7 LMICs in 2017, although only in Mauritania (20.7% (16.5–25.6%)) did all units exceed these levels (Extended Data Fig. 3). Critical wasting prevalence was concentrated in few areas across the globe in 2017, including the peri-Sahelian areas of countries stretching from Mauritania to Sudan, as well as areas in South Sudan, Ethiopia, Kenya, Somalia, Yemen, India, Pakistan, Bhutan, and Indonesia. Most LMICs reduced within-country disparities between

Fig. 2|**Prevalence of wasting in children under five in LMICs (2000–2017)** and progress towards 2025. a, b, Prevalence of child wasting in children under five at the 5×5-km resolution in 2000 (a) and 2017 (b). c, Overlapping population-weighted tenth and ninetieth percentiles (lowest and highest) of 5×5-km grid cells and AROC in wasting, 2000–2017. d, Overlapping population-weighted quartiles of wasting prevalence and relative 95%

their highest- and lowest-prevalence units between 2000 and 2017, most notably in Algeria, Uzbekistan, and Egypt (Extended Data Fig. 4). Even against a backdrop of national-level declines, however, broad within-country disparities in wasting remained in countries such as Indonesia, Ethiopia, Nigeria, and Kenya. An estimated ninefold difference in wasting prevalence occurred among Kenya's units in 2017, ranging from 2.9% (1.6-4.9%) in Tetu constituency (Nyeri county) to 28.3% (20.2-37.3%) in Turkana East constituency (Turkana county); higher-resolution estimates reveal areas with a wasting prevalence of at least 25%. High-prevalence areas in 2000 typically remained within the highest population-weighted decile for wasting in 2017, including the units of Rabkona county (Unity state) in northern South Sudan (27.8% (19.8-37.6%) in 2000; 17.3% (8.8-21.9%) in 2017), the Tanout department (Zinder region) in southern Niger (21.6% (17.3-26.7%) in 2000; 16.5% (11.3–23.3%) in 2017), and Alor regency (Nusa Tenggara Timur province) in southeastern Indonesia (16.4% (9.6–25.8%) in 2000; 20.7% (12.8-30.3%) in 2017) (Fig. 2c).

The absolute number of children affected by wasting was unequal both across and within countries (Fig. 2e, f). Of the 58.3 million (47.6–70.7 million) children affected by wasting in 2017, 57.1% (52.7–61.6%) occurred in four of the most populous countries: India (26.1 million (23.1–29.0 million); 44.7% (41.0–48.6%) of global wasting), Pakistan (3.5 million (2.8–4.3 million); 6.0% (5.8–6.1%)), Bangladesh (1.8 million (1.2–2.4 million); 3.0% (2.6–3.4%)), and Indonesia (2.0 million (1.7–2.3 million); 3.4% (3.3–3.5%)). On the basis of standard thresholds¹¹,

uncertainty in 2017. **e**, **f**, Number of children under five affected by wasting, at the 5 × 5-km (**e**) and first-administrative-unit (**f**) levels. **g**, 2000–2017 annualized decrease in wasting prevalence relative to rates needed during 2017–2025 to meet the WHO GNT. **h**, Grid-cell-level predicted wasting prevalence in 2025. Maps were produced using ArcGIS Desktop 10.6. Interactive visualization tools are available at https://vizhub.healthdata.org/lbd/cgf.

these countries had serious levels of national wasting prevalence (10 to <15%), ranging from 12.2% (9.7–14.9%) in Pakistan to 15.7% (15.5–15.9%) in India, and all but Bangladesh had areas with estimated wasting levels above 20%; increased efforts, especially in densely populated areas with high prevalence and absolute numbers, could immensely reduce global child wasting.

The prevalence of underweight-a composite indicator of stunting and wasting-followed the scattered pattern of high-stunting areas in SSA and spanning Central Asia to Oceania, and the high prevalence belt of wasting along the African Sahel (Extended Data Fig. 5a, b). Affecting 19.8% (17.3-22.7%) of children under five across LMICs in 2000 and 13.0% (10.4-16.0%) in 2017, reductions in underweight prevalence were most notable for countries in Central and South America, southern SSA, North Africa, and Southeast Asia. For example, by 2017, estimated underweight prevalence had decreased to less than or equal to 20% for nearly all areas in Namibia. By contrast, peri-Sahelian countries stretching from Mauritania to Somalia maintained an estimated underweight prevalence of at least 30% in many areas. Large geographical areas across Central and South Asia also maintained high prevalence of underweight during the study period; in particular, India, Pakistan, and Bangladesh sustained estimated prevalence of at least 30% in most locations. Although levels of child underweight had largely reduced since 2000, within-country disparities remained widespread; 71.4% (75 out of 105) of LMICs experienced at least a twofold difference across units in 2017 (Extended Data Fig. 6).

Prospects for reaching 2025 targets

We estimate that broad areas across Central America and the Caribbean, South America, North Africa, and East Asia had high probability (>95%) of having already achieved targets for both stunting and wasting in 2017 (Extended Data Fig. 7). Exceptions to these regional patterns exist; areas with stagnated progress and less than 50% probability of having achieved the World Health Organization's Global Nutrition Targets for 2025 (WHO GNTs) in 2017 were found throughout much of Guatemala and Ecuador for stunting and in southern Venezuela for wasting (Figs. 1g, 2g, Extended Data Fig. 7). Even within countries that had achieved targets, there remain areas with slow progress; locations in central Peru for stunting and southwestern South Africa for wasting had not achieved targets in 2017 (less than 5% probability)-nuances otherwise hidden by aggregated estimates. Owing to stagnation or increases in prevalence, broad areas in SSA and substantial portions across Central Asia, South Asia, and Oceania (for example, in the Democratic Republic of the Congo and Pakistan for stunting; in Yemen and Indonesia for wasting) require reversal of trends or acceleration of declines in order to meet international targets (Figs. 1g, 2g).

Despite predicted improvements in AROC for 2017-2025, many highly affected countries are predicted to have areas that maintain estimated stunting levels of at least 40% or wasting levels of at least 15% in 2025 (Figs. 1h, 2h). Accounting for uncertainty in 2000-2017 AROC estimates, and with 2010 national-level estimates as a baseline for the 40% stunting reduction target, 44.8% (47 out of 105) of LMICs are estimated to nationally meet WHO GNT (>95% probability) for stunting by 2025 (Supplementary Table 13). At finer scales, 17.1% (n = 18) and 7.6% (n = 8) of LMICs will meet the stunting target in all first and second administrative-level units in 2025, respectively (Extended Data Fig. 8a, d, Supplementary Table 13). Similarly, 35.2% (n=37) of LMICs are estimated to reduce to or maintain less than 5% wasting prevalence by 2025 (>95% probability) based on current trajectories (Supplementary Table 13). Fewer countries were estimated to meet wasting targets in all first administrative-level (16.2% (n=17)) or second administrative-level (9.5% (n=10)) units (Extended Data Fig. 8b, e, Supplementary Table 13). Only 26.7% (n = 28) of LMICs will meet national-level targets for both stunting and wasting by 2025, and only 4.8% (n = 5) will achieve both targets in all units (Supplementary Table 13).

Discussion

Although commendable declines in CGF have occurred globally, this progress measured at a coarse scale conceals subnational and local underachievement and variation in achieving the WHO GNTs. Supporting conclusions in the Global Nutrition Report¹², our results show that most LMICs will not reach WHO GNTs nationally, and even fewer will meet targets across subnational units. Our mapped results show broad heterogeneity across areas, and reveal hotspots of persistent CGF even within well-performing regions and countries, where increased and targeted efforts are needed. In 2017, one in four children under five across LMICs still suffered at least one dimension of CGF, and the largest numbers of affected children were often in specific withincountry locations. Although the national prevalence of CGF was generally lower in Central America and the Caribbean, South American, and East Asian countries, there are communities in these regions in which levels of CGF remain as high as those in SSA and South Asia. Regardless of overall declines, many subnational areas across LMICs maintained high levels of CGF and require substantial acceleration of progress or reversal of increasing trends to meet nutrition targets and leave no populations behind.

To our knowledge, this study is the first to estimate CGF comprehensively across LMICs at a fine geospatial scale, providing a precision public health tool to support efficient targeting of local-level interventions to vulnerable populations. Although densely populated areas may have relatively low prevalence of CGF, the absolute number of affected children may still be high; thus, both relative and absolute estimates are important to determine where additional attention is needed. To achieve international goals, more concerted efforts are needed in areas with decreasing or stagnating trends, without diminishing support in areas that demonstrate progress nor contributing to increases in obesity. In future work, we plan to determine how to stratify our estimates of CGF by sex and age, assess the double burden of child undernutrition and overweight, analyse important maternal indicators that affect child nutritional status outcomes (such as anaemia), and continue to monitor progress towards the 2025 WHO GNTs. These mapped estimates enable decision-makers to visualize and compare subnational CGF and nutritional inequalities, and identify populations most in need of interventions¹³.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-019-1878-8.

- 1. Dicker, D. et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1684-1735 (2018).
- 2. Victora, C. G. et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371, 340-357 (2008).
- WHO & UNICEF. WHO Child Growth Standards and the Identification of Severe Acute 3. Malnutrition in Infants and Children: A Joint Statement https://www.who.int/nutrition/ publications/severemalnutrition/9789241598163/en/ (2009).
- Wang, Y. & Chen, H.-J. In Handbook of Anthropometry (ed. Preedy, V. R.) 2, 29-48 (Springer New York, 2012).
- Waterlow, J. C. et al. The presentation and use of height and weight data for comparing 5. the nutritional status of groups of children under the age of 10 years. Bull. World Health Organ. 55, 489–498 (1977).
- 6. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age, Acta Paediatr. 450, 76-85 (2006).
- 7 ICF & USAID. The DHS Program: Demographic and Health Surveys https://dhsprogram. com/publications/Publication-Search.cfm?shareurl=yes&topic1=15&pubTypeSelected= pubtype_5 (accessed 13 September 2018)
- 8. Reich, B. J. & Haran, M. Precision maps for public health. Nature 555, 32-33 (2018). Osgood-Zimmerman, A. et al. Mapping child growth failure in Africa between 2000 and
- 2015. Nature 555, 41-47 (2018). 10. de Onis, M. et al. Prevalence thresholds for wasting, overweight and stunting in children
- under 5 years. Public Health Nutr. 22, 1-5 (2018). WHO. Nutrition Landscape Information System (NLIS) Country Profile Indicators 11.
- Interpretation Guide https://www.who.int/nutrition/nlis_interpretationguide_ isbn9789241599955/en/ (2010).
- Development Initiatives. The 2018 Global Nutrition Report: Shining a Light to Spur Action 12. on Nutrition https://globalnutritionreport.org/reports/global-nutrition-report-2018/ (2018).
- 13 Annan, K. Data can help to end malnutrition across Africa. Nature 555, 7 (2018).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

Local Burden of Disease Child Growth Failure Collaborators

Damaris K. Kinyoki^{1,2}, Aaron E. Osgood-Zimmerman¹, Brandon V. Pickering¹, Lauren E. Schaeffer¹, Laurie B, Marczak¹, Alice Lazzar-Atwood¹, Michael L, Collison¹, Nathaniel J, Henry¹, Zegeye Abebe³, Abdu A. Adamu^{4,5}, Victor Adekanmbi⁶, Keivan Ahmadi⁷, Olufemi Ajumobi^{8,9}, Ayman Al-Eyadhy¹⁰, Rajaa M. Al-Raddadi¹¹, Fares Alahdab¹², Mehran Alijanzadeh¹³, Vahid Alipour^{14,15}, Khalid Altirkawi¹⁶, Saeed Amini¹⁷, Catalina Liliana Andrei¹⁸, Carl Abelardo T. Antonio^{19,20}, Jalal Arabloo¹⁵, Olatunde Aremu²¹, Mehran Asadi-Aliabadi²², Suleman Atique²³, Marcel Ausloos^{24,25}, Marco Avila²⁶, Ashish Awasthi^{27,28}, Beatriz Paulina Ayala Quintanilla^{29,30}, Samad Azari¹⁵, Alaa Badawi^{31,32}, Till Winfried Bärnighausen^{33,34}, Quique Bassat^{35,36}, Kaleab Baye³⁷, Neeraj Bedi^{38,39}, Bayu Begashaw Bekele^{40,41}, Michelle L. Bell⁴², Natalia V. Bhattacharjee¹, Krittika Bhattacharyya^{43,44}, Suraj Bhattarai⁴⁵, Zulfiqar A. Bhutta^{46,47}, Belete Biadgo⁴⁸, Boris Bikbov⁴⁹, Andrey Nikolaevich Briko⁵⁰, Gabrielle Britton⁵¹, Roy Burstein¹, Zahid A. Butt^{52,53}, Josip Car^{54,55}, Carlos A. Castañeda-Orjuela^{56,57}, Franz Castro⁵⁸, Ester Cerin^{59,60}, Michael G. Chipeta⁶¹, Dinh-Toi Chu⁶², Michael A. Cork¹, Elizabeth A. Cromwell^{1,2}, Lucía Cuevas-Nasu²⁶, Lalit Dandona^{1,28}, Rakhi Dandona^{1,28}, Farah Daoud¹, Rajat Das Gupta^{63,64}, Nicole Davis Weaver¹, Diego De Leo⁶⁵, Jan-Walter De Neve³³, Kebede Deribe^{66,67}, Beruk Berhanu Desalegn⁶⁸, Aniruddha Deshpande¹, Melaku Desta^{69,70}, Daniel Diaz^{70,71}, Mesfin Tadese Dinberu⁷², David Teye Doku^{73,74}, Manisha Dubey⁷⁵, Andre R. Durães^{76,77}, Laura Dwyer-Lindgren^{1,2}, Lucas Earl¹, Andem Effiong⁷⁸, Maysaa El Sayed Zaki⁷⁹, Maha El Tantawi⁸⁰, Ziad El-Khatib^{81,82}, Babak Eshrati^{83,84}, Mohammad Fareed⁸⁵, Andre Faro⁸⁶, Seyed-Mohammad Fereshtehnejad^{87,88}, Irina Filip^{89,90}, Florian Fischer⁹¹, Nataliya A. Foigt⁹², Morenike Oluwatoyin Folayan⁹³, Takeshi Fukumoto^{94,95}, Tsegaye Tewelde Gebrehiwot⁹ Kebede Embaye Gezae⁹⁷, Alireza Ghajar^{98,99}, Paramjit Singh Gill¹⁰⁰, Philimon N. Gona¹⁰¹, Sameer Vali Gopalani^{102,103}, Ayman Grada¹⁰⁴, Yuming Guo^{105,106}, Arvin Haj-Mirzaian^{107,108}, Arya Haj-Mirzaian^{107,109}, Jason B. Hall¹, Samer Hamidi¹¹⁰, Andualem Henok⁴¹, Bernardo Hernández Prado^{1,2}, Mario Herrero¹¹¹, Claudiu Herteliu¹¹², Chi Linh Hoang¹¹³, Michael K. Hole¹¹⁴, Naznin Hossain^{115,116}, Mehdi Hosseinzadeh^{117,118}, Guoqing Hu¹¹⁹, Sheikh Mohammed Shariful Islam^{120,121}, Mihajlo Jakovljevic¹²², Ravi Prakash Jha¹²³, Jost B. Jonas^{124,125}, Jacek Jerzy Jozwiak¹²⁶, Amaha Kahsay¹²⁷, Tanuj Kanchan¹²⁸, Manoochehr Karami¹²⁹, Amir Kasaeian^{130,131}, Yousef Saleh Khader¹³², Ejaz Ahmad Khan¹³³, Mona M. Khater¹³⁴, Yun Jin Kim¹³⁵, Ruth W. Kimokoti¹³⁶, Adnan Kisa¹³⁷, Sonali Kochhar^{138,139}, Soewarta Kosen¹⁴⁰, Ai Koyanagi^{36,141}, Kewal Krishan¹⁴², Barthelemy Kuate Defo^{143,144}, G. Anil Kumar²⁸, Manasi Kumar^{145,146}, Sheetal D. Lad¹⁴⁷, Faris Hasan Lami¹⁴⁸, Paul H. Lee¹⁴⁹, Aubrey J. Levine¹, Shanshan Li¹⁰⁵, Shai Linn¹⁵⁰, Rakesh Lodha¹⁵¹, Hassan Magdy Abd El Razek¹⁵², Muhammed Magdy Abd El Razek¹⁵³, Marek Majdan¹⁵⁴, Azeem Majeed¹⁵⁵, Reza Malekzadeh^{156,157}, Deborah Carvalho Malta¹⁵⁸, Abdullah A. Mamun¹⁵⁹, Mohammad Ali Mansournia¹⁶⁰, Francisco Rogerlândio Martins-Melo¹⁶¹, Anthony Masaka¹⁶², Benjamin Ballard Massenburg¹⁶³, Benjamin K. Mayala¹, Fabiola Mejia-Rodriguez¹⁶⁴, Mulugeta Melku⁴⁰, Walter Mendoza¹⁶⁵, George A. Mensah^{166,167}, Tomasz Miazgowski¹⁶⁸, Ted R. Miller^{169,170}, G. K. Mini^{171,172}, Erkin M. Mirrakhimov^{173,174}, Babak Moazen^{33,175}, Aso Mohammad Darwesh¹⁷⁶, Shafiu Mohammed^{33,177}, Farnam Mohebi¹⁷⁸, Ali H. Mokdad^{1,2}, Yoshan Moodley¹⁷⁹, Ghobad Moradi^{180,181}, Maziar Moradi-Lakeh²², Paula Moraga¹⁸², Shane Douglas Morrison¹⁸³, Jonathan F. Mosser¹, Seyyed Meysam Mousavi^{184,185}, Ulrich Otto Mueller^{186,187}, Christopher J. L. Murray^{1,2}, Ghulam Mustafa^{188,189}, Mehdi Naderi¹⁹⁰, Mohser Naghavi^{1,2}, Farid Najafi¹⁹¹, Vinay Nangia¹⁹², Duduzile Edith Ndwandwe⁵, Ionut Negoi¹⁹³, Josephine W. Ngunjiri¹⁹⁴, Huong Lan Thi Nguyen¹⁹⁵, Long Hoang Nguyen¹¹³, Son Hoang Nguyen¹¹³, Jing Nie¹⁹⁶, Chukwudi A. Nnaji^{5,197}, Jean Jacques Noubiap¹⁶⁷, Malihe Nourollahpour Shiadeh¹⁹⁸, Peter S. Nyasulu¹⁹⁹, Felix Akpojene Ogbo²⁰⁰, Andrew T. Olagunju^{201,202}, Bolajoko Olubukunola Olusanya²⁰³, Jacob Olusegun Olusanya²⁰³, Eduardo Ortiz-Panozo^{204,20} Stanislav S. Otstavnov^{206,207}, Mahesh P. A.²⁰⁸, Adrian Pana^{112,209}, Anamika Pandey²⁸ Sanghamitra Pati²¹⁰, Snehal T. Patil²¹¹, George C. Patton^{212,213}, Norberto Perico²¹⁴, David M. Pigott^{1,2}, Meghdad Pirsaheb²¹⁵, Ellen G. Piwoz²¹⁶, Maarten J. Postma^{217,218}, Akram Pourshams¹⁵⁶, Swayam Prakash²¹⁹, Hedley Quintana⁵⁸, Amir Radfar^{220,221}, Alireza Rafiei^{222,223}, Vafa Rahimi-Movaghar²²⁴, Rajesh Kumar Rai^{225,226}, Fatemeh Rajati²¹⁵, David Laith Rawaf^{227,228} Salman Rawaf^{229,230}, Rahul Rawat²¹⁶, Giuseppe Remuzzi²¹⁴, Andre M. N. Renzaho^{231,232}, Carlos Rios-González^{233,234}, Leonardo Roever²³⁵, Jennifer M. Ross^{1,138}, Ali Rostami²³⁶, Nafis Sadat¹, Yahya Safari²¹⁵, Mahdi Safdarian^{224,237}, Amirhossein Sahebkar^{238,239}, Nasir Salam²⁴⁰, Payman Salamati²²⁴, Yahya Salimi^{191,241}, Hamideh Salimzadeh¹⁵⁶, Abdallah M. Samy²⁴², Benn Sartorius^{2,243}, Brijesh Sathian^{244,245}, Megan F. Schipp¹, David C. Schwebel²⁴⁶, Anbissa Muleta Senbeta²⁴⁷, Sadaf G. Sepanlou^{156,157}, Masood Ali Shaikh²⁴⁸, Teresa Shamah Levy Mohammadbagher Shamsi²⁴⁹, Kiomars Sharafi²¹⁵, Rajesh Sharma²⁵⁰, Aziz Sheikh^{251,252}, Apurba Shil²⁵³, Diego Augusto Santos Silva²⁵⁴, Jasvinder A. Singh^{255,256}, Dhirendra Narain Sinha^{257,258}, Moslem Soofi²⁴¹, Agus Sudaryanto^{259,260}, Mu'awiyyah Babale Sufiyan²⁶¹, Rafael Tabarés-Seisdedos^{262,263}, Birkneh Tilahun Tadesse^{264,265,267}, Mohamad-Hani Temsah^{266,267}, Abdullah Sulieman Terkawi^{268,269}, Zemenu Tadesse Tessema²⁷⁰, Andrew L. Thorne-Lyman²⁷¹, Marcos Roberto Tovani-Palone²⁷², Bach Xuan Tran²⁷³, Khanh Bao Tran^{274,275}, Irfan Ullah^{276,277}, Olalekan A. Uthman²⁷⁸, Masoud Vaezghasemi²⁷⁹, Afsane Vaezi²⁸⁰, Pascual R. Valdez^{281,282}, John Vanderheide¹, Yousef Veisani²⁸³, Francesco S. Violante^{284,285}, Vasily Vlassov²⁸⁶, Giang Thu Vu¹¹³, Linh Gia Vu¹¹³, Yasir Waheed²⁸⁷, Judd L. Walson¹³⁸, Yafeng Wang²⁸⁸, Yuan-Pang Wang²⁸⁹, Elizabeth N. Wangia²⁹⁰, Andrea Werdecker^{186,187}, Gelin Xu²⁹¹, Tomohide Yamada² Engida Yisma²⁹³, Naohiro Yonemoto²⁹⁴, Mustafa Z. Younis^{295,296}, Mahmoud Yousefifard²⁹⁷ Chuanhua Yu^{288,298}, Sojib Bin Zaman^{299,300}, Mohammad Zamani³⁰¹, Yunquan Zhang³¹ Nicholas J. Kassebaum^{1,304,305} & Simon I. Hay^{1,2,305}*

¹Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA. ²Department of Health Metrics Sciences, School of Medicine, University of Washington,

Seattle, WA, USA, ³Human Nutrition Department, University of Gondar, Gondar, Ethiopia, ⁴Department of Global Health, Stellenbosch University, Cape Town, South Africa. ⁵Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa. ⁶School of Medicine, Cardiff University, Cardiff, UK. ⁷Lincoln Medical School, Universities of Nottingham & Lincoln, Lincoln, UK, ⁸School of Community Health Sciences, University of Nevada, Reno, NV, USA. ⁹National Malaria Elimination Program, Federal Ministry of Health, Abuja, Nigeria. ¹⁰Pediatric Intensive Care Unit, King Saud University, Riyadh, Saudi Arabia. ¹¹Department of Family and Community Medicine, King Abdulaziz University, Jeddah, Saudi Arabia. ¹²Evidence Based Practice Center, Mayo Clinic Foundation for Medical Education and Research, Rochester, MN, USA, ¹³Qazvin University of Medical Sciences, Qazvin, Iran, ¹⁴Health Economics Department, Iran University of Medical Sciences, Tehran, Iran. ¹⁵Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran. ¹⁶King Saud University, Riyadh, Saudi Arabia. ¹⁷Health Services Management Department, Arak University of Medical Sciences, Arak, Iran. ¹⁸Carol Davila University of Medicine & Pharmacy, Bucharest, Romania, ¹⁹Department of Health Policy & Administration, University of the Philippines Manila, Manila, The Philippines. ²⁰Department of Applied Social Sciences, Hong Kong Polytechnic University, Hong Kong, China. ²¹School of Health Sciences, Birmingham City University, Birmingham, UK. ²²Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran. ²³Department of Health Informatics, University of Ha'il, Ha'il, Saudi Arabia, ²⁴School of Business, University of Leicester, Leicester, UK. 25 Department of Statistics and Econometrics, Bucharest University of Economic Studies, Bucharest, Romania. ²⁶Center for Research in Evaluation and Surveys, National Public Health Institute, Cuernavaca, Mexico. 27 Indian Institute of Public Health, Gandhinagar, India, ²⁸Public Health Foundation of India, Gurugram, India, ²⁹The Judith Lumley Centre, La Trobe University, Melbourne, Victoria, Australia.³⁰General Office for Research and Technological Transfer, Peruvian National Institute of Health, Lima, Peru. ³¹Public Health Risk Sciences Division, Public Health Agency of Canada, Toronto, Ontario, Canada. ³²Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada. ³³Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany. $^{\rm 34}{\rm T.~H.~Chan~School}$ of Public Health, Harvard University, Boston, MA, USA, ³⁵Barcelona Institute for Global Health, University of Barcelona, Barcelona, Spain. ³⁶Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain. ³⁷Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia. ³⁸Department of Community Medicine, Gandhi Medical College Bhopal, Bhopal, India. ³⁹ Jazan University, Jazan, Saudi Arabia. ⁴⁰ Institute of Public Health, University of Gondar, Gondar, Ethiopia. ⁴¹Public Health Department, Mizan-Tepi University, Teppi, Ethiopia. ⁴²School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA. 43 Department of Statistical and Computational Genomics, National Institute of Biomedical Genomics, Kalyani, India. ⁴⁴Department of Statistics, University of Calcutta, Kolkata, India, ⁴⁵Department of Global Health, Global Institute for Interdisciplinary Studies, Kathmandu, Nepal. ⁴⁶Centre for Global Child Health, University of Toronto, Toronto, Ontario, Canada. ⁴⁷Centre of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan. ⁴⁸Department of Clinical Chemistry, University of Gondar, Gondar, Ethiopia. ⁹Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy. ⁵⁰Biomedical Technologies, Bauman Moscow State Technical University, Moscow, Russia. ⁵¹Center for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama, Panama. ⁵²School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, Canada. ⁵³Al Shifa School of Public Health, Al Shifa Trust Eye Hospital, Rawalpindi, Pakistan.⁵⁴Centre for Population Health Sciences, Nanyang Technological University, Singapore, Singapore. ⁵⁵Global Health Unit, Imperial College London, London, UK. ⁵⁶Colombian National Health Observatory, National Institute of Health, Bogota, Colombia. ⁵⁷Epidemiology and Public Health Evaluation Group, National University of Colombia, Bogota, Colombia. ⁵⁸Gorgas Memorial Institute for Health Studies, Panama, Panama, ⁵⁹Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia. 60 School of Public Health, University of Hong Kong, Hong Kong, China. ⁶¹Big Data Institute, University of Oxford, Oxford, UK. ⁶²Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam. 63 Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA. ⁶⁴James P. Grant School of Public Health, BRAC University, Dhaka, Bangladesh.⁶⁵Australian Institute for Suicide Research and Prevention, Griffith University, Mount Gravatt, Queensland, Australia. 66 School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia. ⁶⁷Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK. 68 School of Nutrition, Food Science and Technology, Hawassa University, Hawassa, Ethiopia. 69 Department of Midwifery, Debre Markos University, Debre Markos, Ethiopia, ⁷⁰Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan Rosales, Mexico, 71Center of Complexity Sciences, National Autonomous University of Mexico, Mexico City, Mexico. ⁷²Department of Midwifery, Debre Berhan University, Debre Berhan, Ethiopia. ⁷³Department of Population and Health, University of Cape Coast, Cape Coast, Ghana. ⁷⁴Faculty of Social Sciences, Health Sciences, University of Tampere, Tampere, Finland, ⁷⁵World Food Programme, New Delhi, India, ⁷⁶Medical Board, Roberto Santos General Hospital, Salvador, Brazil. 77 Department of Internal Medicine, Bahia School of Medicine and Public Health, Salvador, Brazil. 78 Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, New South Wales, Australia.⁷⁹Department of Clinical Pathology, Mansoura University, Mansoura, Egypt, ⁸⁰Pediatric Dentistry and Dental Public Health, Alexandria University, Alexandria, Egypt. 81 Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden.⁸²World Health Programme, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, Canada, 83 School of Public Health, Arak University of Medical Science Arak, Iran. ⁸⁴Center of Communicable Disease Control, Ministry of Health and Medical

Article

Education, Tehran, Iran. 85 College of Medicine, Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia. 86 Department of Psychology, Federal University of Sergipe, Sao Cristovao, Brazil. 87 Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.⁸⁸Division of Neurology, University of Ottawa, Ottawa, Ontario, Canada. 89 Psychiatry Department, Kaiser Permanente, Fontana, CA, USA, 90 Department of Health Sciences, A. T. Still University, Mesa, AZ, USA. 91 Department of Population Health Medicine and Health Services Research, Bielefeld University, Bielefeld, Germany. ⁹²Laboratory of Population Aging, Institute of Gerontology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine. 93 Department of Child Dental Health, Obafemi Awolowo University, Ile-Ife, Nigeria. ⁹⁴Gene Expression & Regulation Program, The Wistar Institute, Philadelphia, PA, USA. 95 Department of Dermatology, Kobe University, Kobe, Japan. 96 Department of Epidemiology, Jimma University, Jimma, Ethiopia. 97 Department of Biostatistics, Mekelle University, Mekelle, Ethiopia. 98 Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences, Tehran, Iran. 99 Department of Medicine, Massachusetts General Hospital, Boston, MA, USA, ¹⁰⁰Unit of Academic Primary Care, University of Warwick, Coventry, UK. 101 Nursing and Health Sciences Department, University of Massachusetts Boston, Boston, MA, USA. 102 Department of Biostatistics and Epidemiology, University of Oklahoma, Oklahoma City, OK, USA. ¹⁰³Department of Health and Social Affairs, Government of the Federated States of Micronesia, Palikir, Federated States of Micronesia. ¹⁰⁴Department of Dermatology, Boston University, Boston, MA, USA. ¹⁰⁵School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia. 106 Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China. ¹⁰⁷Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran. ¹⁰⁸Obesity Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ¹⁰⁹Department of Radiology, Johns Hopkins University, Baltimore, MD, USA, ¹¹⁰School of Health and Environmental Studies, Hamdan Bin Mohammed Smart University, Dubai, United Arab Emirates. ¹¹¹Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, St Lucia, Queensland, Australia.¹¹²Department of Statistics and Econometrics, Bucharest University of Economic Studies, Bucharest, Romania.¹¹³Center of Excellence in Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam. ¹¹⁴Department of Pediatrics, Dell Medical School, University of Texas Austin, Austin, TX, USA. ¹¹⁵Department of Pharmacology and Therapeutics, Dhaka Medical College, Dhaka, Bangladesh. ¹⁶Department of Pharmacology, Bangladesh Industrial Gases Limited, Tangail, Bangladesh. ¹¹⁷Department of Computer Engineering, Islamic Azad Univeristy, Tehran, Iran. ¹¹⁸Computer Science Department, University of Human Development, Sulaimaniyah, Iraq. ¹¹⁹Department of Epidemiology and Health Statistics, Central South University, Changsha, China. ¹²⁰Institute for Physical Activity and Nutrition, Deakin University, Burwood, Victoria, Australia. ¹²¹Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. 122 Department of Health Care and Public Health, Sechenov First Moscow State Medical University, Moscow Russia. ¹²³Department of Community Medicine, Banaras Hindu University, Varanasi, India. ¹²⁴Department of Ophthalmology, Heidelberg University, Heidelberg, Germany. ¹²⁵Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing, China. ¹²⁶Department of Family Medicine and Public Health, University of Opole, Opole, Poland. ¹²⁷Department of Nutrition and Dietetics, Mekelle University, Mekelle, Ethiopia. ¹²⁸Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, India. 129 Department of Epidemiology, Hamadan University of Medical Sciences, Hamadan, Iran. ¹³⁰Pars Advanced and Minimally Invasive Medical Manners Research Center, Iran University of Medical Sciences Tehran, Tehran, Iran, ¹³¹Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran, 132 Department of Public Health, Jordan University of Science and Technology, Irbid, Jordan. 133 Epidemiology and Biostatistics Department, Health Services Academy, Islamabad, Pakistan. ¹³⁴Department of Medical Parasitology, Cairo University, Cairo, Egypt. ¹³⁵School of Medicine, Xiamen University Malaysia, Sepang, Malaysia.¹³⁶Department of Nutrition, Simmons University, Boston, MA, USA. ¹³⁷School of Health Sciences, Kristiania University College, Oslo, Norway. ¹³⁸Department of Global Health, University of Washington, Seattle, WA, USA. ¹³⁹Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands. ¹⁴⁰Independent Consultant, Jakarta, Indonesia.¹⁴¹CIBERSAM, San Juan de Dios Sanitary Park, Sant Boi De Llobregat, Spain. ⁴²Department of Anthropology, Paniab University, Chandigarh, India, ¹⁴³Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada, ¹⁴⁴Department of Demography, University of Montreal, Montreal, Quebec, Canada. ¹⁴⁵Department of Psychiatry, University of Nairobi, Nairobi, Kenya. 146 Division of Psychology and Language Sciences University College London, London, UK. 147 Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India. ¹⁴⁸Department of Community and Family Medicine, University of Baghdad, Baghdad, Iraq.¹⁴⁹School of Nursing, Hong Kong Polytechnic University, Hong Kong, China. ¹⁵⁰School of Public Health, University of Haifa, Haifa, Israel. ¹⁵¹Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, India. ¹⁵²Radiology Department, Mansoura Faculty of Medicine, Mansoura, Egypt. ⁵³Ophthalmology Department, Aswan Faculty of Medicine, Aswan, Egypt, ¹⁵⁴Department of Public Health, Trnava University, Trnava, Slovakia.¹⁵⁵Department of Primary Care and Public Health, Imperial College London, London, UK. ¹⁵⁶Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran. 157 Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. ¹⁵⁸Department of Maternal and Child Nursing and Public Health, Federal University of Minas Gerais, Belo Horizonte, Brazil, ¹⁵⁹Institute for Social Science Research, The University of Queensland, Brisbane, Queensland, Australia. ¹⁶⁰Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran, ¹⁶¹Campus Caucaia, Federal Institute of Education, Science and Technology of Ceará, Caucaia, Brazil.¹⁶²Public Health Department, Botho UniversityBotswana, Gaborone, Botswana. ¹⁶³Division of Plastic Surgery, University of Washington, Seattle, WA, USA. ¹⁶⁴Research in Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico. ¹⁶⁵Peru Country Office, United Nations Population Fund (UNFPA), Lima, Peru. ¹⁶⁶Center for Translation Research and Implementation Science, National Institutes of Health, Bethesda, MD, USA, ¹⁶⁷Department of Medicine, University of Cape Town, Cape Town, South Africa. ¹⁶⁸Department of Propedeutics of Internal Diseases & Arterial Hypertension, Pomeranian Medical University, Szczecin, Poland. 169 Pacific Institute for Research & Evaluation, Calverton, MD, USA, ¹⁷⁰School of Public Health, Curtin University, Perth, Western Australia, Australia.¹⁷¹Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India. ¹⁷²Global Institute of Public Health (GIPH), Ananthapuri Hospitals and Research Centre, Trivandrum, India. ¹⁷³Faculty of Internal Medicine, Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan. ¹⁷⁴Department of Atherosclerosis and Coronary Heart Disease, National Center of Cardiology and Internal Disease, Bishkek, Kyrgyzstan.¹⁷⁵Institute of Addiction Research (ISFF), Frankfurt University of Applied Sciences, Frankfurt, Germany, 176 Department of Information Technology, University of Human Development, Sulaymaniyah, Iraq. ¹⁷⁷Health Systems and Policy Research Unit, Ahmadu Bello University, Zaria, Nigeria. 178 Non-communicable Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran. ¹⁷⁹Department of Public Health Medicine, University of Kwazulu-Natal, Durban, South Africa.¹⁸⁰Department of Epidemiology and Biostatistics, Kurdistan University of Medical Sciences, Sanandaj, Iran. ¹⁸¹Social Determinants of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran ¹⁸²Department of Mathematical Sciences, University of Bath, Bath, UK. ¹⁸³Department of Surgery, University of Washington, Seattle, WA, USA. ¹⁸⁴Department of Health Management and Economics, Tehran University of Medical Sciences, Tehran, Iran. ¹⁸⁵Health Management Research Center, Bagiyatallah Univeristy of Medical Sciences, Tehran, Iran, 186 Federal Institute for Population Research, Wiesbaden, Germany. ¹⁸⁷Center for Population and Health, Wiesbaden, Germany. ¹⁸⁸Department of Pediatric Medicine, Nishtar Medical University, Multan, Pakistan. ¹⁸⁹Department of Pediatrics & Pediatric Pulmonology, Institute of Mother & Child Care, Multan, Pakistan.¹⁹⁰Clinical Research Development Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran, ¹⁹¹Department of Epidemiology & Biostatistics, Kermanshah University of Medical Sciences, Kermanshah, Iran. ¹⁹²Suraj Eye Institute, Nagpur, India. ¹⁹³General Surgery, Carol Davila University of Medicine & Pharmacy, Bucharest, Romania. ¹⁹⁴Department of Biological Sciences, University of Embu, Embu, Kenya. ¹⁹⁵Institute for Global Health Innovations, Duy Tan University, Hanoi, Vietnam, ¹⁹⁶Department of Sociology & Institute for Empirical Social Science Research, Xi'an Jiaotong University, Xi'an, China. ¹⁹⁷School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa. ¹⁹⁸Mazandaran University of Medical Sciences, Sari, Iran. ¹⁹⁹Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa. 200 UCIBIO, University of Porto, Porto, Portugal.²⁰¹Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada. 202 Department of Psychiatry, University of Lagos, Lagos, Nigeria. 203 Centre for Healthy Start Initiative, Lagos, Nigeria. 204 Center for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico. 205 School of Health and Welfare, Jönköping University, Jönköping, Sweden. 206 Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. 207 Department of Project Management, National Research University Higher School of Economics, Moscow, Russia. 208 Department of Respiratory Medicine, Jagadguru Sri Shivarathreeswara Academy of Health Education and Research, Mysore, India. ²⁰⁹Center for Health Outcomes & Evaluation, Bucharest, Romania. ²¹⁰Regional Medical Research Centre, Indian Council of Medical Research, Bhubaneswar, India, ²¹¹Krishna Institute of Medical Sciences, Deemed University, Karad, India. ²¹²Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.²¹³Population Health, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.²¹⁴Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.²¹⁵Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran, ²¹⁶Bill & Melinda Gates Foundation, Seattle, WA, USA. 217 Department of Economics and Business, University of Groningen, Groningen, The Netherlands. ²¹⁸University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. ²¹⁹Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.²²⁰College of Graduate Health Sciences, A. T. Still University, Mesa, AZ, USA. ²²¹College of Medicine, University of Central Florida, Orlando, FL, USA. 222 Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran. 223 Department of Immunology, Mazandaran University of Medical Sciences, Sari, Iran. 224 Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran, 225 Society for Health and Demographic Surveillance, Suri, India. 226 Department of Economics, University of Göttingen, Göttingen, Germany. 227WHO Collaborating Centre for Public Health Education and Training, Imperial College London, London, UK. 228 University College London Hospitals, London, UK. ²²⁹Academic Public Health, Public Health England, London, UK. ²³⁰Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK. ²³¹School of Social Sciences and Psychology, Western Sydney University, Penrith, New South Wales, Australia. ²³²Translational Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia. 233 Research Directorate, Nihon Gakko University, Fernando De La Mora, Paraguay. ²³⁴Research Direction, Universidad Nacional de Caaguazú, Coronel Oviedo, Paraguay. 235 Department of Clinical Research, Federal University of Uberlândia, Uberlândia, Brazil. 236 Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran. 237 Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran, 238 Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. 239 Halal Research Center of IRI, FDA,

Tehran, Iran. 240 Department of Pathology, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.²⁴¹Social Development & Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran. 242 Department of Entomology, Ain Shams University, Cairo, Egypt. ²⁴³Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK. 244 Surgery Department, Hamad Medical Corporation, Doha, Qatar. 245 Faculty of Health & Social Sciences, Bournemouth University, Bournemouth, UK. ²⁴⁶Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA, ²⁴⁷Department of Food Science and Nutrition, Jigijga University, Jigijga, Ethiopia. ²⁴⁸Independent Consultant, Karachi, Pakistan. ²⁴⁹Department of Sports Medicine & Rehabilitation, Kermanshah University of Medical Sciences, Kermanshah, Iran, 250 University School of Management and Entrepreneurship, Delhi Technological University, New Delhi, India. ²⁵¹Division of General Internal Medicine, Harvard University, Boston, MA, USA. ²⁵²Centre for Medical Informatics, University of Edinburgh, Edinburgh, UK. 253 Department of Public Health, Ben Gurion University of the Negev, Beersheva, Israel. ²⁵⁴Department of Physical Education, Federal University of Santa Catarina, Florianopolis, Brazil, 255 Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA. ²⁵⁶Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA. ²⁵⁷Department of Epidemiology, School of Preventive Oncology, Patna, India. 258 Department of Epidemiology, Healis Sekhsaria Institute for Public Health, Mumbai, India.²⁵⁹Department of Nursing, Muhammadiyah University of Surakarta, Surakarta, Indonesia, 260 Department of Public Health, China Medical University, Taichung, Taiwan. 261 Department of Community Medicine, Ahmadu Bello University, Zaria, Nigeria.²⁶²Department of Medicine, University of Valencia, Valencia, Spain. ²⁶³Carlos III Health Institute, Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Madrid, Spain. 264 Department of Pediatrics, Hawassa University, Hawassa, Ethiopia, 265 International Vaccine Institute, Seoul, South Korea, 266 Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia. 267 College of Medicine, Alfaisal University, Riyadh, Saudi Arabia. 268 Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Palo Alto, CA, USA. 269 Department of Anesthesiology, King Fahad Medical City, Riyadh, Saudi Arabia. 270 Department of Epidemiology and Biostatistics, University of Gondar, Gondar, Ethiopia, 271 Department of International Health, Johns Hopkins University, Baltimore, MD, USA. 272 Department of Pathology and Legal Medicine, University of São Paulo, Ribeirão Preto, Brazil. 273 Department of Health Economics, Hanoi Medical

University, Hanoi, Vietnam. 274 Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand. 275 Clinical Hematology and Toxicology, Military Medical University, Hanoi, Vietnam. 276 Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan. 277 TB Culture Laboratory, Mufti Mehmood Memorial Teaching Hospital, Dera Ismail Khan, Pakistan, 278 Division of Health Sciences, University of Warwick, Coventry, UK. 279 Department of Epidemiology and Biostatistics, School of Public Health and Nutrition, Umeå University, Umeå, Sweden. 280 Department of Medical Mycology and Parasitology, Mazandaran University of Medical Sciences, Sari, Iran. 281 Argentine Society of Medicine, Ciudad De Buenos Aires, Argentina. ²⁸²Velez Sarsfield Hospital, Buenos Aires, Argentina. ²⁸³Psychosocial Injuries Research Center, Ilam University of Medical Sciences, Ilam, Iran. ²⁸⁴Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy. ²⁸⁵Occupational Health Unit, Sant'orsola Malpighi Hospital, Bologna, Italy. ²⁸⁶Department of Health Care Administration and Economics, National Research University Higher School of Economics, Moscow, Russia.²⁸⁷Foundation University Medical College, Foundation University Islamabad, Islamabad, Pakistan, 288 Department of Epidemiology and Biostatistics, Wuhan University, Wuhan, China. 289 Department of Psychiatry, University of São Paulo, São Paulo, Brazil. 290 University of Nairobi, Nairobi, Kenya. 291 School of Medicine, Nanjing University, Nanjing, China. 292 Department of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo, Japan, ²⁹³School of Allied Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia, ²⁹⁴Department of Psychopharmacology, National Center of Neurology and Psychiatry, Tokyo, Japan. ²⁹⁵Health Economics & Finance, Jackson State University, Jackson, MS, USA. ²⁹⁶School of Medicine, Tsinghua University, Beijing, China. ²⁹⁷Prevention of Cardiovascular Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 298 Global Health Institute, Wuhan University, Wuhan, China. 299 Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia, ³⁰⁰Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.³⁰¹Student Research Committee, Babol University of Medical Sciences, Babol, Iran. 302 School of Public Health, Wuhan University of Science and Technology, Wuhan, China. ³⁰³Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China. 304 Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA. 305 These authors jointly supervised this work: Nicholas J. Kassebaum, Simon I. Hay. *e-mail: sihay@uw.edu