The NEURAGHE architecture has proved to be a powerful accelerator for Deep Convolutional Neural Networks running on heterogeneous architectures based on Xilinx Zynq-7000 APSoCs. NEURAGHE exploits the processing system and the programmable logic available in these devices, to improve performance through parallelism and to widen the scope of use-cases that can be supported. In this work, we extend the NEURAghe template-based architecture to guarantee design-time scalability to multi-processor SoCs with vastly different cost, size and power envelope such as Xilinx’s Z-7007s, Z-7020 and Z-7045. The proposed architecture achieves state-of-the-art performance and cost effectiveness in all the analyzed configurations, reaching up to 335 GOps/s on the Z-7045.

Meloni, P., Loi, D., Deriu, G., Carreras, M., Conti, F., Capotondi, A., et al. (2020). Exploring NEURAGHE: A Customizable Template for APSoC-based CNN Inference at the Edge. IEEE EMBEDDED SYSTEMS LETTERS, 12(2), 62-65 [10.1109/LES.2019.2947312].

Exploring NEURAGHE: A Customizable Template for APSoC-based CNN Inference at the Edge

Conti, Francesco;Capotondi, Alessandro;Rossi, Davide
2020

Abstract

The NEURAGHE architecture has proved to be a powerful accelerator for Deep Convolutional Neural Networks running on heterogeneous architectures based on Xilinx Zynq-7000 APSoCs. NEURAGHE exploits the processing system and the programmable logic available in these devices, to improve performance through parallelism and to widen the scope of use-cases that can be supported. In this work, we extend the NEURAghe template-based architecture to guarantee design-time scalability to multi-processor SoCs with vastly different cost, size and power envelope such as Xilinx’s Z-7007s, Z-7020 and Z-7045. The proposed architecture achieves state-of-the-art performance and cost effectiveness in all the analyzed configurations, reaching up to 335 GOps/s on the Z-7045.
2020
Meloni, P., Loi, D., Deriu, G., Carreras, M., Conti, F., Capotondi, A., et al. (2020). Exploring NEURAGHE: A Customizable Template for APSoC-based CNN Inference at the Edge. IEEE EMBEDDED SYSTEMS LETTERS, 12(2), 62-65 [10.1109/LES.2019.2947312].
Meloni, Paolo; Loi, Daniela; Deriu, Gianfranco; Carreras, Marco; Conti, Francesco; Capotondi, Alessandro; Rossi, Davide
File in questo prodotto:
File Dimensione Formato  
Binder3.pdf

Open Access dal 15/04/2020

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/728470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact