Animals can generate sounds that serve a wide range of vital functions such as to defend themselves or their territories, to attract a partner, to maintain contact with other members of their social group, and to help themselves and their partner/group during navigation. Ethologists are interested in recording and analyzing these sounds, many of which are vocalizations. Advances in sensing and wireless technology permit today acoustic data acquisition and transmission in a wireless manner. In many applications, the wireless sensor needs to be placed on the animal's body and should be unobtrusive, light-weight, small, and long-lasting. This paper presents the design and development of an ultra-low power miniaturized and lightweight wireless sensor node for monitoring captive zebra finches. The node is designed to be worn with minimal effort by small-sized birds to collect, process, and send/receive data to/from a remote host via Bluetooth Low-Energy. The main feature of the developed node is the capability to stream compressed or uncompressed audio and temperature data continuously. Multiple nodes can monitor several birds simultaneously and acquire and transmit high-quality audio streams, one for each bird, with low audio interference. Due to the combination of low-power hardware and software techniques and technologies, the 1.4 g node achieves a lifetime of up to 24 h at 4 kHz sampling rate on a single zinc-air battery. Experimental results on birds confirm the functionality of the developed wireless node and the lifetime benefits of compression.

A Bluetooth-Low-Energy Sensor Node for Acoustic Monitoring of Small Birds / Magno M.; Vultier F.; Szebedy B.; Yamahachi H.; Hahnloser R.H.R.; Benini L.. - In: IEEE SENSORS JOURNAL. - ISSN 1530-437X. - ELETTRONICO. - 20:1(2020), pp. 8832176.425-8832176.433. [10.1109/JSEN.2019.2940282]

A Bluetooth-Low-Energy Sensor Node for Acoustic Monitoring of Small Birds

Benini L.
2020

Abstract

Animals can generate sounds that serve a wide range of vital functions such as to defend themselves or their territories, to attract a partner, to maintain contact with other members of their social group, and to help themselves and their partner/group during navigation. Ethologists are interested in recording and analyzing these sounds, many of which are vocalizations. Advances in sensing and wireless technology permit today acoustic data acquisition and transmission in a wireless manner. In many applications, the wireless sensor needs to be placed on the animal's body and should be unobtrusive, light-weight, small, and long-lasting. This paper presents the design and development of an ultra-low power miniaturized and lightweight wireless sensor node for monitoring captive zebra finches. The node is designed to be worn with minimal effort by small-sized birds to collect, process, and send/receive data to/from a remote host via Bluetooth Low-Energy. The main feature of the developed node is the capability to stream compressed or uncompressed audio and temperature data continuously. Multiple nodes can monitor several birds simultaneously and acquire and transmit high-quality audio streams, one for each bird, with low audio interference. Due to the combination of low-power hardware and software techniques and technologies, the 1.4 g node achieves a lifetime of up to 24 h at 4 kHz sampling rate on a single zinc-air battery. Experimental results on birds confirm the functionality of the developed wireless node and the lifetime benefits of compression.
2020
A Bluetooth-Low-Energy Sensor Node for Acoustic Monitoring of Small Birds / Magno M.; Vultier F.; Szebedy B.; Yamahachi H.; Hahnloser R.H.R.; Benini L.. - In: IEEE SENSORS JOURNAL. - ISSN 1530-437X. - ELETTRONICO. - 20:1(2020), pp. 8832176.425-8832176.433. [10.1109/JSEN.2019.2940282]
Magno M.; Vultier F.; Szebedy B.; Yamahachi H.; Hahnloser R.H.R.; Benini L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/728429
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact