Abstract: Electrospinning technology is used to fabricate sub-micrometric fiber mats made of a random equimolar poly(lactide-co-glycolide) copolymer (PLGA), whose in vitro hydrolytic degradation kinetics is investigated over a period of 49 days in phosphate buffer at 37°C. The PLGA mats show a decrease of molecular weight (by GPC) from the very beginning of the experiment, whereas a macroscopic weight loss from the samples is appreciated (by gravimetry) only after 20 days of buffer exposure. The molar mass distribution curves remain mono-modal during the degradation experiment suggesting that no acid auto-catalyzed hydrolysis, commonly observed in bulk specimens, occurs in sub-micrometric PLGA fibers. PLGA scaffolds containing Endothelial Growth Factor Supplement (ECGS) were also fabricated by electrospinning, from ECGS-containing polymer solutions. Mesenchymal cells derived from human bone marrow mononuclear cells were cultured in the presence of such ECGS-loaded PLGA scaffolds. Flow cytometry and Differential Interference Contrast microscopy were used to characterize the cell cultures over a 7 day period. The results of AnexinV/PI staining and of intranuclear Ki-67 protein expression show, together with concomitant cell morphology modifications, that growth factors released from the scaffolds support the survival, proliferation and growth of the mesenchymal cells. This result demonstrates that ECGS maintains its bioactivity upon release from the electrospun fibers and shows the versatility of the electrospinning technique.

C. Gualandi, P. Wilczek, M.L. Focarete, G. Pasquinelli, M. Kawalec, M. Scandola (2009). Bioresorbable electrospun nanofibrous scaffolds loaded with bioactive molecules. E-POLYMERS, no.060, 1-16.

Bioresorbable electrospun nanofibrous scaffolds loaded with bioactive molecules

GUALANDI, CHIARA;FOCARETE, MARIA LETIZIA;PASQUINELLI, GIANANDREA;SCANDOLA, MARIASTELLA
2009

Abstract

Abstract: Electrospinning technology is used to fabricate sub-micrometric fiber mats made of a random equimolar poly(lactide-co-glycolide) copolymer (PLGA), whose in vitro hydrolytic degradation kinetics is investigated over a period of 49 days in phosphate buffer at 37°C. The PLGA mats show a decrease of molecular weight (by GPC) from the very beginning of the experiment, whereas a macroscopic weight loss from the samples is appreciated (by gravimetry) only after 20 days of buffer exposure. The molar mass distribution curves remain mono-modal during the degradation experiment suggesting that no acid auto-catalyzed hydrolysis, commonly observed in bulk specimens, occurs in sub-micrometric PLGA fibers. PLGA scaffolds containing Endothelial Growth Factor Supplement (ECGS) were also fabricated by electrospinning, from ECGS-containing polymer solutions. Mesenchymal cells derived from human bone marrow mononuclear cells were cultured in the presence of such ECGS-loaded PLGA scaffolds. Flow cytometry and Differential Interference Contrast microscopy were used to characterize the cell cultures over a 7 day period. The results of AnexinV/PI staining and of intranuclear Ki-67 protein expression show, together with concomitant cell morphology modifications, that growth factors released from the scaffolds support the survival, proliferation and growth of the mesenchymal cells. This result demonstrates that ECGS maintains its bioactivity upon release from the electrospun fibers and shows the versatility of the electrospinning technique.
2009
C. Gualandi, P. Wilczek, M.L. Focarete, G. Pasquinelli, M. Kawalec, M. Scandola (2009). Bioresorbable electrospun nanofibrous scaffolds loaded with bioactive molecules. E-POLYMERS, no.060, 1-16.
C. Gualandi; P. Wilczek; M.L. Focarete; G. Pasquinelli; M. Kawalec; M. Scandola
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/72592
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact