In this note we investigate the multi-parameter Potential Theory on the weighted d-tree (Cartesian product of several copies of uniform dyadic tree), which is connected to the discrete models of weighted Dirichlet spaces on the polydisc. We establish some basic properties of the respective potentials, capacities and equilibrium measures (in particular in the case of product polynomial weights). We explore multi-parameter Hardy inequality and its trace measures, and discuss some open problems of potential-theoretic and combinatorial nature.

Arcozzi N., Mozolyako P., Perfekt K.-M. (2019). Some properties related to trace inequalities for the multi-parameter Hardy operators on poly-trees. ANALYSIS AND MATHEMATICAL PHYSICS, 9(3), 937-954 [10.1007/s13324-019-00327-5].

Some properties related to trace inequalities for the multi-parameter Hardy operators on poly-trees

Arcozzi N.;Mozolyako P.;
2019

Abstract

In this note we investigate the multi-parameter Potential Theory on the weighted d-tree (Cartesian product of several copies of uniform dyadic tree), which is connected to the discrete models of weighted Dirichlet spaces on the polydisc. We establish some basic properties of the respective potentials, capacities and equilibrium measures (in particular in the case of product polynomial weights). We explore multi-parameter Hardy inequality and its trace measures, and discuss some open problems of potential-theoretic and combinatorial nature.
2019
Arcozzi N., Mozolyako P., Perfekt K.-M. (2019). Some properties related to trace inequalities for the multi-parameter Hardy operators on poly-trees. ANALYSIS AND MATHEMATICAL PHYSICS, 9(3), 937-954 [10.1007/s13324-019-00327-5].
Arcozzi N.; Mozolyako P.; Perfekt K.-M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/725483
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact