A very recent proposal of a set of entropy measures for spatial data, based on building pairs of realizations, allows to split the data heterogeneity that is usually assessed via Shannon's entropy into two components: spatial mutual information, identifying the role of space, and spatial residual entropy, measuring heterogeneity due to other sources. A further decomposition into partial terms deeply investigates the role of space at specific distance ranges. The present work proposes improvements to the method and adds relevant results proving that the new set of spatial entropies satisfies a list of desirable properties. We extend the methodology to sets of realizations greater than pairs. We also show that the approach is more general, better performing and more interpretable than the most popular proposals in the literature, thanks to the property of additivity and a new way of computing entropy that explicitly discards the order within sets. A novel procedure for building the necessary quantities for computations is also provided. A comparative study illustrates the superior performance of the new set of measures over representative spatial configurations. Practical questions are answered by means of a case study on land use data.

Altieri L., C.D. (2019). Advances in spatial entropy measures. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 33(4-6), 1223-1240 [10.1007/s00477-019-01686-y].

Advances in spatial entropy measures

Altieri L.;Cocchi D.;Roli G.
2019

Abstract

A very recent proposal of a set of entropy measures for spatial data, based on building pairs of realizations, allows to split the data heterogeneity that is usually assessed via Shannon's entropy into two components: spatial mutual information, identifying the role of space, and spatial residual entropy, measuring heterogeneity due to other sources. A further decomposition into partial terms deeply investigates the role of space at specific distance ranges. The present work proposes improvements to the method and adds relevant results proving that the new set of spatial entropies satisfies a list of desirable properties. We extend the methodology to sets of realizations greater than pairs. We also show that the approach is more general, better performing and more interpretable than the most popular proposals in the literature, thanks to the property of additivity and a new way of computing entropy that explicitly discards the order within sets. A novel procedure for building the necessary quantities for computations is also provided. A comparative study illustrates the superior performance of the new set of measures over representative spatial configurations. Practical questions are answered by means of a case study on land use data.
2019
Altieri L., C.D. (2019). Advances in spatial entropy measures. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 33(4-6), 1223-1240 [10.1007/s00477-019-01686-y].
Altieri L., Cocchi D., Roli G.
File in questo prodotto:
File Dimensione Formato  
AltieriL_SERRA_2019_postprint.pdf

Open Access dal 28/05/2020

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 564.91 kB
Formato Adobe PDF
564.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/725265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact