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Abstract A very recent proposal of a set of entropy measures for spatial data,
based on building pairs of realizations, allows to split the data heterogeneity that
is usually assessed via Shannon’s entropy into two components: spatial mutual
information, identifying the role of space, and spatial residual entropy, measuring
heterogeneity due to other sources. A further decomposition into partial terms
deeply investigates the role of space at specific distance ranges. The present work
proposes improvements to the method and adds relevant results proving that the
new set of spatial entropies satisfies a list of desirable properties. We extend the
methodology to sets of realizations greater than pairs. We also show that the ap-
proach is more general, better performing and more interpretable than the most
popular proposals in the literature, thanks to the property of additivity and a new
way of computing entropy that explicitly discards the order within sets. A novel
procedure for building the necessary quantities for computations is also provided.
A comparative study illustrates the superior performance of the new set of mea-
sures over representative spatial configurations. Practical questions are answered
by means of a case study on land use data.

Keywords Shannon’s entropy · Residual entropy · Mutual information ·
Additivity property · Spatial entropy · Categorical variables.

L. Altieri
University of Bologna, Department of Statistical Sciences
via Belle Arti, 41, 40126 Bologna
Tel.: +39-051-2098201
Fax: +39-051-2086242
E-mail: linda.altieri@unibo.it

D. Cocchi
University of Bologna, Department of Statistical Sciences
via Belle Arti, 41, 40126 Bologna
E-mail: daniela.cocchi@unibo.it

G. Roli
University of Bologna, Department of Statistical Sciences
via Belle Arti, 41, 40126 Bologna
E-mail: g.roli@unibo.it



2 Linda Altieri et al.

1 Introduction

When a set of units can be assigned to a finite number of categories of a study
variable, a standard way of assessing heterogeneity is to compute entropy. The sem-
inal work by Shannon (1948) provided the basics to define entropy, and Shannon’s
formula of entropy, initially proposed in Information Theory, has rapidly become
popular in many applied sciences, e.g. ecology and geography (Patil and Taillie
1982; Hoeting et al 2000; Frosini 2004; Leinster and Cobbold 2012). Hydrology is a
further discipline where entropy based measures received great attention (Butera
et al 2018). The reasons for the success of this index are two-fold. First of all,
entropy is a measure of diversity that only considers the number of categories of
the study variable and their probabilities; thus, it can be employed in a wide range
of applications, even when qualitative variables are involved. In addition, entropy
summarizes and captures several aspects that are differently denoted according
to the specific target: heterogeneity, information, surprise, diversity, uncertainty,
contagion are all concepts strongly related to entropy.

A relatively recent research field aims at accounting for space in entropy mea-
sures, as a natural generalization when the spatial location of the occurrences of
the variable under study is available and relevant. Over the past decades, several
works belonging to the fields of geography, ecology and landscape studies pro-
posed measures including spatial information. These can be ascribed to two main
approaches. The first starts with Batty (1974, 1976, 2010) who extends Theil’s
work (1972) to define a spatial entropy measure accounting for unequal space par-
tition into sub-areas. Later, Karlström and Ceccato (2002) modified the initial
proposal in order to satisfy the property of additivity in terms of decomposition
of the global index into local components. A few main drawbacks of this set-
ting should be highlighted: first, such entropy can only be computed for a binary
variable, i.e. presence/absence of an attribute at each location. In addition, the
local terms are not entropies and do not possess the properties of the global one.
Lastly, results are heavily affected by the selected area partition. The second ap-
proach to spatial entropy introduces a different way of including space based on a
suitable transformation of the study variable to account for the distance between
realizations (co-occurrences); a first proposal is made by O’Neill et al (1988) for
contiguous couples, extended by Leibovici (2009) and Leibovici et al (2014) to fur-
ther distances and general degrees of co-occurrences. Several indices of contagion
(Li and Reynolds 1993; Riitters et al 1996; Parresol and Edwards 2014) are also
based on this view. Claramunt (2005) proposed a different way of including spatial
information in terms of relative positioning of areas, exploiting the ratio of average
distances between pairs of realizations of the same category to those between pairs
of different categories. Unfortunately, the measures resulting from these distance-
based approaches do not enjoy the additivity property. Moreover, results rely on an
exogenous choice: they are computed conditional on a single distance and cannot
capture the overall spatial behaviour of the variable of interest.

A set of spatial entropy measures has been recently presented by Altieri et al
(2017), which fulfils many desirable properties. It also has the potential to add
innovative elements to the Bayesian Maximum entropy approach (He and Kolovos
2018). The proposal starts from the co-occurrence approach and focuses on pairs
of realizations, but overcomes the lack of relevant features of standard measures
in the literature (Batty 1974; O’Neill et al 1988; Li and Reynolds 1993; Karlström
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and Ceccato 2002; Leibovici 2009). Shannon’s entropy of the transformed variable,
typical of the second approach, is decomposed into the information due to space
and the remaining information brought by the variable itself once space is consid-
ered. The proposal solves the problem of preserving additivity and disaggregating
results, allowing for partial and global syntheses.

The present work extends the approach in Altieri et al (2017) with major in-
novations and proofs: the key advantages are shown with regard to previously
proposed measures, while answering practical questions of interest both with sim-
ulated and real data. Firstly, the methodology for transforming the study variable
in order to account for space, presented for the very specific case of pairs in Al-
tieri et al (2017), is generalized to greater sets of realizations, i.e. further degrees
of co-occurrences. The idea of Leibovici (2009) is presented in an innovative way
here, combined to the decomposition of Shannon’s entropy in Altieri et al (2017),
in order to disaggregate spatial mutual information, a crucial quantity that had
never been exploited for spatial entropy before. Secondly, major advantages with
regard to the spatial entropy indices in O’Neill et al (1988), Li and Reynolds
(1993), Leibovici (2009), Leibovici et al (2014) and Parresol and Edwards (2014),
that were briefly shown empirically for a special case in Altieri et al (2017), are
now discussed in theory, through simulation and with real data. We first show that
the traditional way of computing spatial entropy preserves the spatial ordering of
realizations, implying a series of crucial drawbacks. We thus propose to discard
the order and highlight that this choice brings substantial improvements: reduc-
tions in the computational burden and the identification of a unique maximum
value for the entropy of the transformed variable, which is essential for interpreta-
tion and comparison. Moreover, a novel procedure is proposed to build the needed
co-occurrences and the related quantities for the computation of the new set of
measures. We show how to count co-occurrences at any desired distance range
over the observation area, by using adjacency matrices. Besides, the superiority
of the proposed measures and other relevant features are tested via a simulation
study, which compares the performance of the novel approach with standard spa-
tial entropy measures over the crucial spatial configurations (compact, repulsive,
multicluster and random). The study is a substantial complement to the theoret-
ical advantages, and enhances the interpretability issues of O’Neill et al (1988),
Li and Reynolds (1993), Leibovici (2009), Leibovici et al (2014) and Parresol and
Edwards (2014), due to the fact that they can only be computed on a single dis-
tance and do not consider the overall spatial configuration, nor can be decomposed.
Under the crucial representative scenarios, the answers given by stardard entropy
measures are ambiguous and possibly leading to misinterpretation. The extended
simulation study stresses the added value of the new set of measures. Lastly, an
environmental application is carried out to show the flexibility and informativ-
ity of the proposed measures. Raster data are used for the Italian Region Emilia
Romagna. The pixel size (originally 1250 × 1250 metres) is set as 1, so that the
observation area, i.e. the rectangle enclosing Emilia Romagna, is 228 units wide
along the latitude, and 121 units wide along the longitude. Within the rectangular
grid, the Region territory is made of 14173 cells. The variable of interest is X =
‘land use’ and has I = 4 categories: x1 ‘urban areas’, x2 ‘agricultural/artificially
vegetated areas’, x3 ‘forests/seminatural areas’ and x4 ‘water areas’. The resulting
map is in Figure 1. The case study shows the power and potential of the proposed
set of spatial entropy measures.
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Fig. 1 Emilia Romagna Region, with 4 land cover categories

The paper is organized as follows. In Section 2, some necessary background
notions are introduced. Section 3 extends the innovative way to deal with space in
entropy measures and focuses on the theoretical advantages of the new approach.
The proposed measures are evaluated on simulated data in Section 4 and applied
to land use data in Section 5. Section 6 discusses the main findings.

2 Basics for building spatial entropy measures

Let X be a discrete random variable which takes values xi in a set of I outcomes,
i = 1, . . . , I. Let I(pX) be the information function, where pX = (p(x1), . . . , p(xI))′

is the univariate probability mass function (pmf) of X: I(p(xi)) = log(1/p(xi)),
so that the amount of information about an outcome xi increases as its proba-
bility decreases. Shannon’s entropy of X is defined as the expected value of the
information function:

H(X) = E[I(pX)] =
I∑

i=1

p(xi) log

(
1

p(xi)

)
. (1)

Entropy quantifies the average amount of information brought by X according to
the pmf pX ; it ranges in [0, log(I)] and its maximum value is achieved when X
is uniformly distributed. A major drawback of such entropy is that it does not
account for the spatial location of occurrences, so that datasets with identical pmf
but very different spatial configurations share the same entropy.

An entropy measure that accounts for space, namely a spatial entropy, implies
the formal definition of a neighbourhood. The concept of neighbourhood (Cressie
1993) means that occurrences at certain spatial units are influenced, in a positive
or negative sense, by what happens at surrounding units, i.e. their neighbours.
Spatial units may be points, defined via coordinate pairs, or areas, identified via
representative coordinate pairs, such as the area centroids. Spatial units occur
over the ‘observation window’: a fixed, limited spatial region with known size
and shape; the spatial phenomenon under study potentially exists everywhere,
but is only detected over the observation window. ’Distances’ are always intended
as Euclidean distances between coordinate pairs on the two-dimensional space.
The neighbourhood system over a set of spatial units may be identified according
to any chosen criterion; usually, two units are considered neighbours if they fall
within a fixed distance. The spatial extent of the influence among units, i.e. the
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choice of the neighbourhood system, is commonly fixed exogenously. The system
can be represented by a graph (Bondy and Murty 2008), where each location is
a vertex and neighbouring locations are connected by edges. The simplest way
of synthesizing a neighbourhood system over N spatial units is via an adjacency
matrix (Anselin 1995; Bondy and Murty 2008), i.e. a square matrix whose elements
indicate whether pairs of vertices are adjacent or not in the graph: auu′ = 1 if
u′ ∈ N (u), that is the neighbourhood of area u, with u = 1, . . . , N ; auu = 0 by
definition. Note that u identifies the spatial unit, while i identifies the category of
the variable X: each location u carries a spatial realization xu, which presents one
of the I categories: xu ∈ {x1, . . . , xi, . . . , xI} for all u.

When working with spatial data, one should use the finest available resolution,
i.e. points if data are a point pattern, or the finest grid provided if data are lattice;
this is the case in the remainder of the paper.

3 A range-occurrence approach for spatial entropy measures

In order to suitably define spatial entropy measures, a series of desirable proper-
ties needs to be satisfied. Firstly, such measures should be able to split the part
of entropy due to the spatial effect and the one due to other sources of hetero-
geneity. In particular, the two global components should account for the overall
spatial configuration, not only for a single distance to define the neighbourhood,
as currently proposed in the literature. Secondly, in order to allow as deep an
investigation as wished, each global measure should be decomposable into par-
tial terms, reflecting the information linked to different distance ranges. Besides,
the role of space should be detected, irrespective of the spatial association being
positive (clustering behaviour) or negative (repulsive behaviour). Furthermore, it
should be applicable to variables with any number of categories. Lastly, it should
allow straightforward interpretation in order to disseminate the results.

A set of spatial entropy measures is here considered, improving Altieri et al
(2017). The approach consists in defining two new variables: Z, which transforms
the information of X according to an idea of neighbourhood (by extending the
proposal by O’Neill et al, 1988), and W , which accounts for the spatial config-
uration. In the present work, the variable Z is a categorical variable identifying
‘co-occurrences’ of X. This term first appears in Leibovici (2009): a co-occurrence
is a set of realizations of X over the spatial domain, and is defined by fixing a
degree of co-occurrence m, i.e. the cardinality of each set of co-occurrences. For
simplicity, the resulting variable is denoted as Z instead of Z(m). In the simplest
case, m = 2 and the categories of Z, denoted by zr, identify pairs of categories of
X, {xi, xi′}, with i, i′ = 1, . . . , I. If m = 3, sets of three categories of X are con-
sidered and each category zr corresponds to {xi, xi′ , xi′′}, with i, i′, i′′ = 1, . . . , I;
the same holds for further degrees m. The choice of m is exogenous, driven by
the researcher’s experience and by the purposes of each specific case study. The
new variable Z has Rm categories, and its pmf is pZ = (p(z1), . . . , p(zRm

))′, where
p(zr), with r = 1, . . . , Rm, is the probability of observing the rth category of Z
on any mth degree co-occurrence of X over the observation window. The pmf
may be known, which requires knowledge of the pmf of X and also of its spatial
structure at any distance; usually, the pmfs of both X and Z are estimated. In the
current literature and in the present work, spatial entropy measures are estimated
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by substituting the unknown probabilities with the observed relative frequencies,
obtaining the well known non parametric and also maximum likelihood entropy
estimator (Paninski 2003).

A novelty of the proposed measures in Altieri et al (2017) lies in the intro-
duction of a second discrete variable; properties of spatial entropy related to a bi-
variate distribution are highlighted, with a different perspective, in Leibovici and
Birkin (2015). In the present work, the second variable W classifies the Euclidean
distances within the observation window according to a set of distance classes,
so that co-occurrences take place at different distance ranges. Intervals wk, with
k = 1, . . . ,K, cover all distances within the observation window: a set of distance
breaks d0, . . . , dK is fixed, with d0 = 0 and dK being the maximum possible dis-
tance inside the window. Then, each class is wk =]dk−1, dk], and a mth degree
co-occurrence at range wk takes place if the distance between any two units of the
co-occurrence set is included in the interval ]dk−1, dk]. Co-occurrences where the
minimum and the maximum distances between pairs of realizations fall in different
wk intervals cannot be assigned to a distance range and are not considered. The
resulting co-occurrences are, from now on, named range-occurrences. The number
K and the breaks dk are fixed according to the context and can be modified as
wished. When space is discrete, e.g. for lattice data, some geometrical restrictions
should be added, in order to avoid wk intervals with zero range-occurrences: for
instance, if m = 2 the difference dk − dk−1 should be no smaller than the pixel
width. In addition, increasing the value of m imposes restrictions on the minimum
value allowed for the ratio dk/(dk−1), below which the class of range-occurrences
falling within the kth distance range would be empty. This rarely happens in prac-
tical situations as, when working on a plane, usually m = 2 or m = 3 is chosen.
As regards interpretation, based on the value of m one should choose sensible
breaks dks for the distance ranges for avoiding empty classes; nevertheless, this is
not a problem, since empty classes do not affect computations as they become 0
terms in the additive entropy formula and are discarded. The variable W has a
pmf pW = (p(w1), . . . , p(wK))′, where p(wk) is the probability of a co-occurrence
to fall within the kth distance range. Probabilities p(wk) depend on the degree of

range-occurrence m; we follow the same choice as for Z and do not write p
(m)
W for

simplicity of notation. Such probabilities are estimated by relative frequencies, as
for the pmfs of X and Z, i.e., by the frequencies of range-occurrences of degree m
that lie within each distance range, irrespective of their category.

The introduction of distances combined with the use of the variable Z allows
to define a neighbourhood via the construction of adjacency matrices, which, for
a generic degree m, generalize to hypermatrices in the m-dimensional space. In-
deed, once the degree m of co-occurrences is fixed, each distance category wk

induces the choice of a corresponding adjacency matrix (or hypermatrix) Ak that
is from now on called range-adjacency matrix. Each wk defines a ring around
each areal unit. If m = 2, the matrix elements are auu′,k = 1 if unit u′ (its
centroid, if data are lattice) falls within the ring defined by wk and centered at
unit u; they are auu′,k = 0 otherwise. If the units are areas/pixels, the same
holds for the area centroids. This allows to focus on range-occurrences, i.e. co-
occurrences identified by non-zero elements of each Ak, a subset of Z conditional
on a fixed distance range, denoted by Z|wk. Since neighbourhood is a symmet-
ric concept, each Ak is a symmetric matrix (or hypermatrix), therefore only one
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out-of-(hyper)diagonal (hyper)triangle of Ak may be considered. This way, K con-
ditional pmfs are constructed pZ|wk

= (p(z1|wk), . . . , p(zRm
|wk))′. This condition-

ing is relevant to stress the logical relationship between the two random variables
jointly considered: Z, pertaining to the variable under study, is influenced by W ,
which relates to space.

3.1 A set of spatial entropy measures

The introduction of two variables, Z and W , allows to exploit a well known rela-
tionship of the theory of entropy (Cover and Thomas 2006) which has not been
considered in the traditional literature of spatial entropy measures so far:

H(Z) = MI(Z,W ) + H(Z)W . (2)

In Information Theory, equation (2) states that the entropy of a variable may be
split into the information brought by its relationship with another variable and
the residual entropy due to other sources of heterogeneity. For spatial entropy
measures and under the framework introduced above, relationship (2) represents
a meaningful decomposition of Shannon’s entropy of the variable Z; this shows the
additional value of using Z instead of X. Spatial mutual information MI(Z,W )
is a Kullback-Leibler divergence which represents the component of the entropy
of Z due to its relationship with the spatial configuration. Spatial global residual
entropy H(Z)W measures the remaining information brought by Z.

Generalizing Altieri et al (2017), spatial mutual information in (2) is defined
as:

MI(Z,W ) =
K∑

k=1

p(wk)

Rm∑
r=1

p(zr|wk) log

(
p(zr|wk)

p(zr)

)
. (3)

This formulation rewrites the usual definition of mutual information (Cover and
Thomas 2006), applied to the case of Z and W , that highlights the relationship
direction between Z and W and the decomposition of the overall role of space with
respect to the contribution of every distance range wk. Each kth internal sum is
called spatial partial information, where ‘partial’ corresponds to a specific distance
class wk:

PI(Z|wk) =

Rm∑
r=1

p(zr|wk) log

(
p(zr|wk)

p(zr)

)
. (4)

Each partial term is a Kullback-Leibler divergence quantifying the contribution to
the departure from independence at each distance class wk.

The partial-to-global relationship is respected once the PIs are weighted by
the probabilities p(wk), thus satisfying the desirable property of additivity:

MI(Z,W ) =
K∑

k=1

p(wk)PI(Z|wk). (5)

Relationship (5) guarantees that the choice of the distances dk to build the classes
wk does not influence the global value of spatial mutual information: the global
result can be obtained by any split or aggregation of classes, according to the
investigation that needs to be carried over the partial terms.
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Spatial global residual entropy H(Z)W in (2) can be defined, following the
traditional formulation for residual (or conditional) entropy (Cover and Thomas
2006), as:

H(Z)W = E[H(Z|W )] =
K∑

k=1

p(wk)

Rm∑
r=1

p(zr|wk) log

(
1

p(zr|wk)

)
. (6)

The components of (6)

H(Z|wk) = E[I
(
pZ|wk

)
] =

Rm∑
r=1

p(zr|wk) log

(
1

p(zr|wk)

)
(7)

are named spatial partial residual entropies. When these measures are multiplied
by the probabilities p(wk), they allow spatial global residual entropy (6) to be
rewritten in additive form, analogously to (5), as:

H(Z)W =
K∑

k=1

p(wk)H(Z|wk). (8)

Spatial partial residual entropies (7) show how each distance range contributes to
the residual entropy of Z. Once more, the choice of the wk does not affect the
value of the global measure.

By incorporating relationships (5) and (8) into equation (2), a general decom-
position of H(Z) is obtained:

H(Z) =
K∑

k=1

p(wk) [PI(Z|wk) + H(Z|wk)] , (9)

where the contribution of each partial term in explaining the relationship between
Z and W is isolated. This way, Shannon’s entropy H(Z) is written in additive
form, where each term can be explored to check what categories of Z and W are
farther away from independence.

The methodology for spatial entropy measures presented in this Section holds
irrespective of the choice of K and of the distance breaks d1, . . . , dK−1. Indeed,
the global values of the two components of spatial entropy, i.e. spatial mutual in-
formation and spatial residual entropy, are unaffected by such choice. The distance
breaks are instead crucial in defining the partial terms, that determine the detail
and depth of the investigation.

To better disseminate the results, the role of space can be quantified in pro-
portional terms:

MIprop(Z,W ) =
MI(Z,W )

H(Z)
. (10)

This quantity ranges in [0, 1] and states the contribution of space in the entropy
of Z as a proportion of the marginal entropy. Shannon’s entropy of Z has to be
considered a reference value for both terms. This way, datasets with the same
pmf pZ but different spatial configurations share the same H(Z) with a different
contribution of its two components.
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3.2 Advances with regard to standard spatial entropy measures

3.2.1 Discarding order within co-occurrences

The mth degree occurrence of Z may be built either following a direction in space,
usually rightward and downward, or by double-counting, i.e. counting sets of oc-
currences moving along all spatial directions; this choice is discussed by Riitters
et al (1996). Additionally, an assumption on whether to preserve the order within
co-occurrences is needed when defining Z. Ordering occurrences means considering
couples, triples and so on, while discarding the order means considering pairs, sets
of three and so on. Thus, order preservation regards the importance of the relative
spatial location of the observations, irrespective of their distance. For example,
when m = 3, if order is preserved the triple (xi, xi′ , xi′′) implies that the observa-
tion carrying the i′th category occurs at the right or below the observation carrying
the ith category, and that the one presenting the i′′th category is right and below
the others. Under this criterion, the triple is different from (xi′ , xi′′ , xi), while the
unordered set of three {xi, xi′ , xi′′} includes both cases. Consequently, when order
is discarded, the number of categories of Z is Rm =

(
I+m−1

m

)
; when it is preserved,

the number increases to Ro
m = Im, because sets of co-occurrences containing the

same categories of X in a different order are counted separately in the entropy of
Z. As a further example, if m = 2 and X is binary, the possible pairs are {x1, x1},
{x1, x2} and {x2, x2}, while couples are (x1, x1), (x1, x2), (x2, x1) and (x2, x2). In
the approach of the present paper, order is discarded: if m = 2 pairs are consid-
ered, then R2 = 3, as only three terms p11 = p({x1, x1}), p12 = p({x1, x2}) and
p22 = p({x2, x2}) enter the computation of Shannon’s entropy of Z. The standard
spatial entropy measures (O’Neill et al 1988; Li and Reynolds 1993; Leibovici 2009;
Leibovici et al 2014; Parresol and Edwards 2014), instead, compute such entropy
with Ro

2 = 4 terms: p11, p12, p21 and p22. Because of the double counting method,
p12 equals p21, therefore there is very little discussion about the implications of
entering the two probabilities separately; only Riitters et al (1996) points this out.
Actually, the standard choice of separating quantities of type pij and pji (and
analogously for further degrees of co-occurrences) in computations implies order
preservation within co-occurrences.

Ordering occurrences has major consequences that have not been considered
over the spatial entropy literature. Firstly, considering the order does not appear
sensible in spatial statistics, since spatial configurations are not generally assumed
to have a direction. The purpose of a spatial entropy measure is to understand
whether any kind of spatial association contributes to decrease the entropy of
a variable, irrespective of the direction. Secondly, when order is discarded, the
number of categories of Z is smaller. The gap between the two options grows as I
increases, and results in a substantially different computational burden for large
datasets. Thirdly, since order preservation increases the number of categories of Z,
the resulting entropy also increases and leads to erroneous conclusions when there
is no substantive motivation for separating quantities of type pij and pji. Lastly,
and above all, discarding the order ensures a one-to-one correspondence between
Shannon’s entropy of X and Z. Indeed, if order is considered, a change in the
spatial configuration, i.e. a permutation of the realizations of X over space, results
in a change in the ordered co-occurrences, yielding a different entropy H(Z), while
H(X) is the same. In the above example, if occurrences are spatially permuted, the
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number of couples of type (x1, x2) and (x2, x1) changes, thus p12 and p21 change
too and the entropy H(Z) is different in the two cases. This is a drawback, since
Z is a transformed variable used as a tool to explain the spatial entropy of X:
H(Z) should be a stable reference value, while its two components MI(Z,W ) and
H(Z)W should vary in order to evaluate the role of space. This is only the case
when order is discarded: the number of pairs {x1, x2} is the same irrespective of
the spatial location of occurrences, thus p12 does not change and H(Z) is unique.

The present paper also recommends to discard the traditional double counting
rule. Double counting, indeed, increases the computational burden substantially.
In addition, even when order is preserved, conclusions may be incorrect: due to
the equality of pij and pji (and analogously for further order of occurrences), the
entropy value is higher than the one obtained moving right- and downward; see
the discussion in Riitters et al (1996).

All the above reasons encourage the choice of considering unordered occur-
rences as the most appropriate, combined with the approach of moving downward
and rightward along the observation window. This choice removes any considera-
tion of possible anisotropic directional effects, in agreement with the symmetrical
foundations of basic entropy measures. Further details on how to build Z are
given in Section 3.3. More disadvantages of preserving order are highlighted in the
comparative study of Section 4.

3.2.2 A theoretical link to popular spatial entropy measures

Spatial global residual entropy (6) represents a generalization of spatial entropies
available in the literature. O’Neill’s entropy (1988) may be derived as a special
spatial partial residual entropy (7): for lattice data, one can fix the cell width at
1; by setting m = 2 and focusing only on the distance class [0, 1], denoted by
w(01), contiguous couples for the subset Z|w(01) are considered (i.e. pixels that are
adjacent in the dataset, not only in the neighbourhood system graph). O’Neill’s
entropy may indeed be written as:

H(Z|w(01)) = E
[
I
(
pZ|w(01)

)]
=

Ro
2∑

r=1

p(zr|w(01)) log

(
1

p(zr|w(01))

)
. (11)

Expression (11) rewrites equation (2) in O’Neill et al (1988), and takes into ac-
count the corrections to the index discussed in Li and Reynolds (1993) and the
considerations of Section 3.2.1. It sums over Ro

2 = I2 categories, as the authors
preserve the order within couples; the distance range w(01) corresponds to the
range-adjacency matrix A(01), namely the contiguity matrix.

Moreover, for a generic degree m and a particular distance range w(0d) = [0, d],
Leibovici’s entropy (2009) is obtained:

H(Z|w(0d)) = E
[
I
(
pZ|w(0d)

)]
=

Ro
m∑

r=1

p(zr|w(0d)) log

(
1

p(zr|w(0d))

)
. (12)

The distance range w(0d) corresponds to the range-adjacency matrix/hypermatrix
A(0d).

Other measures proposed in the literature (Li and Reynolds 1993; Riitters et al
1996; Parresol and Edwards 2014), being deterministic functions of (11), can also
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be derived from (7). Therefore, all comments also hold for those indices. The limi-
tation of these measures is that they only provide a partial result. Indeed, O’Neill’s
entropy only uses information about adjacent couples, and ignores the rest. Lei-
bovici’s entropy works on the same principle, extending to a general d. Thus, if d
is small, a great part of the spatial information is not considered; conversely, if d
is large, the result is aggregate and excludes any possibility to explore the contri-
bution of space in detail. Measure (6) allows to exploit all the spatial information
and, at the same time, to disaggregate results as wished. More limitations of the
standard spatial entropy indices in comparison to the range-occurrence approach
are shown in Section 4.3 and 5.2.

3.3 Range-occurrences for the variable Z

A procedure to construct range-occurrences for obtaining Z is needed and proposed
in what follows. Let us first consider the case of pairs, i.e. m = 2. In this case, Z
(unordered) has R2 =

(
I+1
2

)
categories, simply denoted by R.

When spatial units are considered, which may be areas or points, the I cate-
gories of X occur over N realizations xu, u = 1, . . . , N . Analogously, the R cate-
gories of Z occur over a number Q >> N of spatial realizations zq, q = 1, . . . , Q.
In particular, Q =

∑
k Qk, where Qk is the number of range-occurrences at wk,

i.e. realizations of Z at the distance category wk.

For each distance category wk, range-occurrences are built according to the
specific N ×N range-adjacency matrix Ak. The cardinality of the neighbourhood
N (u)k of unit u, |N (u)k| =

∑N
u′=1 auu′,k, is the number of u′ spatial units be-

longing to N (u)k, where auu′,k = 1 if units u and u′ lie within distance range

wk and 0 otherwise. The number of observable pairs is Qk =
∑N

u=1 |N (u)k| =∑N
u=1

∑N
u′=1 auu′,k. From this follows that Qk depends on the number N of real-

izations of X and the number of neighbours. Moreover, Qk is different according to
the counting method. If the counting of pairs is rightward and downward, only one
out-of-diagonal triangle of the matrix Ak is used, while the rest receives value 0. If
the so-called double counting method is followed, both out-of-diagonal triangles are
used. Note that the two counting approaches result in a different number Qk, but
do not turn pairs into couples, as Qk only counts the number of range-occurrences
and does not consider their category (see Riitters et al, 1996 and Section 3.2.1 for
details).

In order to construct the range-occurrences for Z, for each wk a Qk×2 matrix
is built (for m = 2), each row containing the values {xu, xu′} identified by the
corresponding Ak. The matrix is composed of N blocks, one for each spatial unit
u; the uth block has |N (u)k| rows, depending on the spatial location of each
element with respect to other units. The first column of each block replicates
the spatial unit value xu as many times as the cardinality of its neighbourhood
|N (u)k|: [xu · 1|N (u)k|].

The second column of the uth block contains the neighbouring values xu′ , u′ ∈
N (u)k, selected via Ak, and is constructed as follows. Let us define vec(X) as a N×
1 vector stacking all realizations of X, and the N ×N selection matrix Ãk, which
considers zeros in Ak as missing values. An element-wise product between vec(X)

and the uth row of Ãk allows to isolate a |N (u)k|-dimensional vector, containing



12 Linda Altieri et al.

the xu′ values, u′ ∈ N (u)k (potentially presenting any of the I categories), and

discarding all other realizations: [vec(X) · Ãu.,k].

Finally, range-occurrences for Z at each distance range wk are obtained by

stacking the N blocks of type
[
xu · 1|N (u)k|, vec(X) · Ãu.,k

]
, with u = 1, . . . , N .

As a result the Qk × 2 matrix is x1 · 1|N (1)k| vec(X) · Ã1.,k

...
...

xN · 1|N (N)k| vec(X) · ÃN.,k

 . (13)

For each distance wk, a matrix (13) is generated (K matrices in total): each row
of the matrix is a range-occurrence of Z at distance wk. The realizations present
at most R categories.

When m > 2, the number Q of realizations of Z increases accordingly. Indeed,
the distance-specific matrices Ak generalize to hypermatrices in the m-dimensional
space and, thus, the cardinality of the neighbourhood grows. The matrix contain-
ing the range-occurrences of Z at each distance wk is now Qk × m, where each
row identifies the category of the spatial unit of interest and of its neighbours,
{xu, xu′ , xu′′ , . . .}.

4 A comparative study of spatial entropy measures

The set of spatial entropy measures illustrated in Section 3 needs to be further
investigated in order to stress their basic properties and highlight the different
contexts of application. In this Section, the behaviour of the range-occurrence
approach is assessed in terms of flexibility and informativity with respect to other
proposals. Several datasets are generated under different scenarios to compute
spatial mutual information (3) and spatial global residual entropy (6), as well as
the partial terms. A comparison of this set of entropy measures is run with respect
to O’Neill’s entropy (11) and its generalization Leibovici’s entropy (12).

For simplicity of presentation, the method is assessed by building the variable
Z to represent pairs of occurrences of X over space, i.e. by fixing m = 2. Discrete
space and a regular grid are considered; space can be discretized as wished, as long
as a distance measure between areas is suitably defined within the observation win-
dow. Additionally, areas may be replaced by points; in this case, W represents the
distance between points themselves, and entropy measures are defined accordingly
(for a case study with point data, see Altieri et al, 2017).

4.1 Data generation

Let us consider N = 2500 realizations of a binary variable X by randomly setting
the pmf pX and then generating values x1 and x2 from a Bernoulli distribution.
Let us introduce space by considering a square window gridded by 50× 50 pixels;
without loss of generality, each pixel is assumed to be a 1×1 square, therefore the
observation window is 50× 50 units.
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X2 − Compact X2 − Repulsive X2 − Multicluster X2 − Random

Fig. 2 Data generated for all simulation scenarios under a uniform distribution of X.

After the random generation of X outcomes, the same simulated sequence of
2500 values is organized over the window according to different spatial configura-
tions, an example of which is presented in Figure 2, where x1 values are represented
as black pixels and x2 values as white pixels. Configurations are chosen as they
are expected to produce different entropy values:

1. compact - the most clustered spatial distribution, obtained by assigning x1

values to the pixels located at the left part of the window and x2 values to
pixels located at the right part;

2. repulsive - the most regular spatial distribution, tending to a chessboard, ob-
tained by assigning x1 values to pixels adjacent to x2-valued pixels, and vice
versa. Note that a perfect chessboard can only be obtained when the number
of x1 and x2 outcomes is the same;

3. multicluster - 25 clusters, whose centroids are generated from a Poisson point
process; then, x1 values are assigned to pixels surrounding the centroids and x2

values to the remaining pixels. The size of the clusters is random, as it depends
on the total number of generated x1 oucomes;

4. random - a pattern with no spatial correlation whatsoever, obtained by assign-
ing x1 or x2 values to pixels via simple random sampling without replacement.

Each simulated scenario is replicated 1000 times, for 1000 generations of pX , and
assigned to the pixels according to the four configurations A further dataset gen-
erated under the hypothesis of having the same number of x1 and x2 outcomes,
yielding the maximum entropy of X, is built as a special case for each scenario,
following the same criteria, and is the one displayed in Figure 2. In this special
case, the 25 cluster centroids (third panel) are also forced to be located on the
nodes of a regular grid over the square window.

If one focuses on the strength of spatial association and not on its type (positive
or negative), a decreasing contribution of space is yielded over the four configura-
tions. Therefore, a good measure should detect, for the compact pattern, a high
level of spatial mutual information and a low spatial residual entropy. Spatial mu-
tual information should gradually decrease across the other scenarios, reaching the
lowest value for the random configuration.

Range-adjacency matrices Ak are built on pixels of size 1 and based on dis-
tances between pixel centroids; thus, the distance between contiguous pixels is 1
and the distance to farther cells along the cardinal directions belongs to the set
of integers Z+. For the partial terms of spatial mutual information and residual
entropy, W is built with categories w1 = [0, 1], w2 =]1, 2], w3 =]2, 5], w4 =]5, 10],
w5 =]10, 20], w6 =]20, 30] and w7 =]30, 50

√
2] (where 50

√
2 is the maximum dis-

tance over the observation window, a square of side 50), covering all possible
distances for pairs over the dataset. This choice for the classes is motivated by
the tradition of spatial statistics (Cressie 1993): class w1 corresponds to what is
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Fig. 3 Neighbourhood system for distance classes w1 (left) and w2 (right)

known as the 4-nearest neighbour system, while class w2 considers the farther 8-
nearest neighbours, and together they form the well-known 12-nearest neighbour
system. These are the standard distance ranges when studying spatial association.
In addition, at w1 and w2 we expect to appreciate the difference among the four
scenarios. As distance increases, spatial association usually decreases, which is why
the following distance ranges are gradually wider and less informative. Figure 3
illustrates the two standard neighbourhood systems for one generic pixel u in the
case m = 2. In the left panel, the circle marking the end of the distance class has
radius 1 and identifies the 4 contiguous pixels as neighbours; this forms 4 pairs of
type {xu, xu′} with u′ taking 4 values. In the right panel, two circles are used as
distance breaks and the resulting ring includes the farther 8 nearest pixels: 8 pairs
of type {xu, xu′} with varying u′ can be built. The variable W covers all possible
distances within the observation window; conclusions in this comparative study
are able to highlight the different influence of space at different distance breaks.
Due to the additivity property, the general validity of the proposal of the present
paper holds irrespective of the chosen distance breaks.

The probabilities p(xi) for each category of X are estimated by the proportion
of spatial units where xi is observed: p̂(xi) =

∑N
u=1 1(xu = xi)/N , with 1 defining

the indicator function.

The Qk realizations of Z at distance range wk are built by following the pro-
cedure proposed in Section 3.3 and counting right- and downward. Their relative
frequencies are used to compute p̂(zr|wk), where r = 1, 2, 3 given that I = 2 and
order is discarded. Since for each distance wk a specific range-adjacency matrix
Ak is built, K = 7 different Ak and conditional distributions p̂Z|wk

are obtained.
The marginal pZ may be estimated after marginalizing out W . An estimate for
pW is also needed: for each k, p̂(wk) = Qk/Q represents the proportion of pairs
within distance range wk.

For the computation of O’Neill’s spatial entropy (11), the employed range-
adjacency matrix is A(01); for Leibovici’s entropy (12), the range-adjacency matrix
A(0d) is used and d = 2 is chosen. Order is preserved for both measures.

All indices are computed for each scenario over the 1000 generated datasets,
plus the special case of uniform distribution among the X categories. Results
are presented via boxplots, that summarize the distribution of each index; stars
highlight results achieved under the uniform distribution of X, while the dashed
lines, where present, mark the indices’ maxima.

4.2 Results

Shannon’s entropy (1) is firstly computed for X and Z without order preservation,
so that H(Z) does not depend on the spatial configuration and is unique (see
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Fig. 4 Proportional spatial mutual information, 1000 simulations. Stars identify the entropy
value computed on a uniformly distributed X.

Section 3.2.1). The distribution of the differences between the normalized versions
of H(X) and H(Z) across 1000 replicates shows that Z and X may be considered as
interchangeable when computing entropy: the differences range from -0.009 to 0.05,
with a mean very close to 0. This highlights that Z brings the same information as
X, and encourages the use of Z, without order preservation, as a starting point for
explaining the spatial behaviour of realizations of X. Entropy H(Z) ranges from
0.52 to 1.04 for the 1000 replicates, and is constant across spatial configurations.
The two components MI(Z,W ) and H(Z)W vary according to the different spatial
patterns; thus, the proportion of entropy due to space, i.e. the proportional version
of mutual information (10), takes different values across scenarios, as shown in
what follows.

Proportional spatial mutual information is displayed in Figure 4. The index
effectively detects the decreasing role of space along the four spatial configurations.
Focusing on the median value, in the compact pattern nearly 10% of the entropy of
Z is due to the data spatial configuration (first boxplot in Figure 4); this implies
that the remaining 90% of H(Z) is due to residual entropy, i.e. heterogeneity
due to other sources. Conversely, no influence of space emerges over the random
pattern, where space does not help in explaining the data heterogeneity: H(Z) and
H(Z)W coincide. As expected, repulsive and multicluster configurations mirror
intermediate situations. At the global level, the detected influence of space is often
low and may be unsatisfactory; for this reason, spatial mutual information (3) is
then disaggregated into spatial partial information terms (4) by fixing the different
distance categories w1 to w7 introduced above.

Results for the partial terms are shown in Figure 5 (results for w7, not re-
ported here, are very similar to those for w6) and highlight at what distances the
spatial configuration contributes substantially to the entropy of Z. For the ran-
dom pattern the role of space is detected as null at any distance range. For the
compact and multicluster configurations, spatial partial information values tend
to decrease as distance increases. The decline is slower for the compact pattern,
where the contribution of space to entropy is appreciable up to distance w5. For
the repulsive pattern, spatial partial information takes high values for the first two
distance ranges, where space plays a role, and is particularly appreciable at dis-
tance w2 because it captures a high number of range-occurrences of type (x1, x1)
and (x2, x2). Then, information drops from distance w3 on: the abrupt decrease
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Fig. 5 Spatial partial information, 1000 simulations. Each star identifies the entropy value
computed on a uniformly distributed X.

explains why the proportional global values (Figure 4, second boxplot) are sensi-
bly lower than those coming from the compact configuration, though still different
from zero.

Spatial partial residual entropies (7) at distances w1 to w6 (results for w7 are
not reported for the same reasons mentioned above) are summarized in Figure 6.
The panels referring to short distances (i.e., w1 and w2) are the most relevant:
when compared with other patterns, compact and repulsive configurations have
lower levels of residual entropy, given the stronger contribution of space detected
by the partial information terms.

Under the special case of having 50% of the outcomes of the variable X of
type x1 and 50% of type x2, consequences can be observed on the decomposition
of H(Z) (stars in Figures 4, 5 and 6). The most interesting aspect concerns the
repulsive pattern, where a uniform distribution corresponds to a perfect chessboard
configuration. In such case, at distance w1 all range-occurrences belong to the same
category of Z, yielding the maximum spatial partial information value (second
boxplot of first panel in Figure 5) and a null residual entropy (second boxplot
of first panel in Figure 6). The recognition of such strong role of space supports
the desirable features of the proposed set of measures, which are not possessed by
standard indices (see the results of Section 4.3).

Figure 7 presents interpretable and comparable results: the median values
at each distance class over the 1000 simulations are computed, then the sum
PI(Z|wk) + H(Z|wk) of (2) is set to 1 at each wk. This enables to appreciate
the relative contribution of both terms for each scenario. The detection of a dif-
ferent role of space among scenarios is evident up to distance w5. In the compact
configuration, the two terms are almost even at short distance, then partial in-
formation decreases slowly and remains present up to the last distance class. The
repulsive scenario shows peaks at short distances, where a chessboard-type con-
figuration may be detected, while from distance w3 on the contribution of space
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Fig. 6 Spatial partial residual entropies, 1000 simulations. Each dashed line corresponds to
the index maximum; each star identifies the entropy value on a uniformly distributed X.
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Fig. 7 Partial information (gray areas) and partial residual entropies (white areas) in propor-
tional terms.

becomes negligible. The multicluster pattern can be seen as a reduced version of
a compact one, and partial information behaves accordingly. Lastly, there is no
spatial information in the random dataset, irrespective of the distance class.

4.3 A comparison to standard spatial entropy measures based on Z

Results for O’Neill’s spatial entropy (11) and Leibovici’s spatial entropy (12) at
distance d = 2 are displayed in Figure 8. For the compact and the multicluster
data, O’Neill’s and Leibovici’s indices tend to behave the same way and return
the same amount of information. This states that the choice of d in Leibovici’s
entropy barely influences the entropy values and is not useful in discriminating,
as long as d is smaller than the cluster size.

O’Neill’s index (Figure 8, left panel) studies the spatial entropy at a distance
equal to the pixel size, as does the first partial term of spatial mutual information
(Figure 6, first panel), but preserves the order in building couples. Leibovici’s en-
tropy values (Figure 8, right panel) are aggregations of the values in the first and
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Fig. 8 O’Neill’s entropy (left) and Leibovici’s entropy with d = 2 (right), 1000 simulations.
Each star identifies the entropy value computed on a uniformly distributed X.

second panels of Figure 6, with order preservation. The difference in the results,
when compared to those of Section 4.2, highlights the consequences of consider-
ing partial terms and discarding the order. Partial residual entropies (7) consider
different distance ranges separately, while Leibovici’s entropy counts all couples
within a fixed distance d without distinction nor possibility of further inspection.
As a result, the measures of Figure 8 are only able to give partial knowledge; more-
over, due to order preservation, their Shannon’s entropy H(Z) is not unique and
cannot be used as a benchmark (see Section 3.2.1). This implies that a propor-
tional contribution of the entropy due to the spatial structure cannot be quantified
here, which is instead done for the decomposable set of spatial entropy measures
in Figure 7.

A further major limitation of considering order within couples in (11) and (12)
is that for the repulsive pattern (Figure 8, second boxplot of both panels) much
greater entropy values are returned than for the compact configuration (first box-
plots). For Leibovici’s entropy, values for the repulsive pattern are even higher
than in O’Neill’s entropy, and have a distribution which is very similar to that of
the random patterns. In the special case of uniform distribution for X, the en-
tropy value for the repulsive pattern (star of the second boxplot in Figure 8, left
panel) cannot reach the minimum value 0 due to order preservation. Conversely, a
well performing spatial entropy measure based on co-occurrences should account
for the presence of a spatial pattern without distinguishing a negative correlation
from a positive one, because the very definition of entropy is based on the idea
of heterogeneity and surprise, and is different from the definition of spatial as-
sociation, that focuses on the type of the relationship. For the spatial measures
considered in this work, heterogeneity concerns range-occurrences, not single real-
izations of X. Therefore, results for the compact and repulsive patterns should be
more similar than they appear in Figure 8. In particular, for the uniform dataset
with a repulsive pattern the lower limit 0 should be reached, since all pairs are
equal: having all realizations of type {x1, x2} means zero surprise and maximum
homogeneity in observing pairs. It also means maximum (negative) spatial associ-
ation for the variable X. This does not occur in Figure 8. Such desirable feature
is met by spatial partial residual entropies (Figure 6, first and second panel), and
constitutes an additional reason for discarding order in building Z.
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4.4 Extension to data with more than two categories

Data are also generated for I = 5 and I = 20 categories. The small gap between
H(X) and H(Z) found for I = 2 becomes even more negligible as I increases.

Only the compact and the random patterns can be distinguished and com-
pared here. Most results are analogous to those reported for the binary case: the
contribution of space is correctly quantified in both scenarios by spatial mutual
information and its partial terms, while spatial residual entropy and its partial
terms suitably measure the heterogeneity not due to space at different distances.
It is worth higlighting that, when switching from I = 2 to I = 5 and I = 20,
all entropy values increase while the variability across replicates decreases both
for the compact and the random configuration. The divergence between the two
spatial configurations due to the reduced variability is another desirable feature
possessed by the range-occurrence approach.

The distributions of the proportional version (10) of spatial mutual information
are centered around similar values for I = 2, I = 5 and I = 20, highlighting that
the role of space is detected as constant across different numbers of categories.
This similarity is a key advantage for interpreting proportional spatial mutual
information, since it is comparable across different variables.

5 Application to land use raster data

After assessing its properties in Section 4, the set of entropy measures proposed
in Section 3 is employed in a real case. This Section is a toolbox for evaluating
the entropy of spatial data, which shows how to tune the choice of the distance
classes.

The application deals with a subset of European CORINE data. CORINE,
(COoRdination de l’INformation sur l’Environnement, i.e. Coordination of Infor-
mation on the Environment) is a programme approved by the European Com-
munity Council in 1985 with the aim of gathering, coordinating and ensuring the
consistency of information on the state of the environment and natural resources in
the Community. CORINE Land Cover (CLC) is a project within the CORINE pro-
gramme specifically created for monitoring land characteristics. It works on map
imageries coming from satellite pictures, which are successively photo-interpreted
and publicly supplied as data matrices. The European territory is divided into
units which are classified according to CLC nomenclature in forty-four classes of
land use. The last extensive dataset update was run by EEA (European Environ-
mental Agency) in 2012, developed within GMES programme (Global Monitoring
for Environment and Security). The resulting Land Cover datasets are freely avail-
able for download at http://eea.europa.eu/.

5.1 Results for land use data

The toolbox develops in three main steps. As a start, Shannon’s entropy of X is
computed. The proportion of pixels, which estimate p(xi), for each of the 4 land
cover categories are in Table 1. The resulting entropy is H(X) = 0.957, with a
maximum of log(I) = log(4) = 1.39. The normalized entropy is H(X)norm = 0.69.
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Table 1 Proportions of land cover categories (variable X).

urban agricultural forests water
xi x1 x2 x3 x4

p̂(xi) 0.055 0.533 0.385 0.027

Table 2 Proportions of pairs of land cover categories (variable Z).

zr z1 z2 z3 z4 z5 z6 z7 z8 z9 z10
{i, i′} {1, 1} {1, 2} {1, 3} {1, 4} {2, 2} {2, 3} {2, 4} {3, 3} {3, 4} {4, 4}
p̂(zr) 0.003 0.058 0.042 0.003 0.286 0.411 0.029 0.147 0.021 0.001

Pairs (m = 2) of categories of X are then considered to build the variable Z. The
Z categories and the corresponding proportions, estimates of p(zr), are shown
in Table 2. In this case, H(Z) is 1.524. The normalized entropy, divided by its
maximum log(R2) = log(10) = 2.3, is H(Z)norm = 0.662. Following the results
of the comparative study of Section 4, the normalized entropies of X and Z are
similar, which further supports the choice of using Z in order to gain information
about X. The normalized values are not very high, due to the departure of the
estimated marginals p̂X and p̂Z from the uniform distribution, as can be seen in
Tables 1 and 2. Entropy H(Z) does not depend on the spatial configuration, but
is fundamental in the spatial entropy perspective since it is the reference value for
both spatial residual entropy and spatial mutual information.

The second step of the proposed spatial entropy toolbox consists in the com-
putation of spatial mutual information (3) and spatial global residual entropy
(6), which sum to H(Z). In this application, at the global level the spatial residual
entropy nearly coincides with its reference value H(Z); the spatial mutual informa-
tion is only MI(Z,W ) = 0.01, and its proportional version (10) is MIprop(Z,W ) =
0.007. This would give the first erroneous idea that the entropy of the variable
’Land use’ over the Emilia Romagna Region is entirely due to sources of hetero-
geneity other than space, but this is a global result, which does not investigate
distance ranges in detail. It is, on the contrary, very important to define distance
classes wk and to compute the partial terms in order to deepen the spatial data
heterogeneity understanding.

The third step consists in choosing suitable distance classes for the partial com-
ponents, namely spatial partial information entropy terms (4) and spatial partial
residual entropies (7). Distance is measured between centroids, and breaks are
chosen, for small distances, based on the pixel size as follows: d0 = 0, d1 = 1 and
d2 = 2; the resulting neighbourhood systems for identifying range-occurrences at
distances w1 and w2 are of common use in spatial statistics and have been shown
in Figure 3.

As a first option, K = 6 distance classes are chosen, and for classes w3 to w6

the distance range after d2 is cut into four equal parts. Table 3 shows the resulting
distance classes and the corresponding partial terms, together with the distance
weights p̂(wk). The results support the importance to focus on the partial terms
to achieve the correct conclusions, without being misled by the global result alone.
Spatial partial information terms (4) in Table 3, second line, allow to understand
in detail how much space affects the entropy of land use data at each distance
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Table 3 First option - distance classes, partial information and partial residual entropies.

k 1 2 3 4 5 6
wk [0; 1] ]1; 2] ]2; 66] ]66; 130] ]130; 194] ]194; 258]

p̂(wk) 0.0003 0.0005 0.4760 0.3833 0.1332 0.0067
PI(Z|wk) 0.338 0.305 0.009 0.005 0.025 0.024
H(Z|wk) 1.421 1.438 1.534 1.496 1.495 1.501

Table 4 Second option - distance classes, partial information and partial residual entropies.

k 1 2 3 4 5 6 7
wk [0; 1] ]1; 2] ]2; 5] ]5; 15] ]15; 66] ]66; 130] ]130; 258]

p̂(wk) 0.0003 0.0005 0.0045 0.0376 0.4339 0.3833 0.1399
PI(Z|wk) 0.338 0.305 0.260 0.172 0.005 0.005 0.028
H(Z|wk) 1.421 1.438 1.458 1.496 1.526 1.496 1.497

range wk. The first two partial terms PI(Z|w1) and PI(Z|w2) are the greatest,
confirming the well known law of geography which says that space plays a more
relevant role at short distances. As Table 3 shows, however, they are weighted
by the two very small values p̂(w1) and p̂(w2), since the range they cover in the
observation window is much smaller than the range covered by intervals w3 to w6.
This explains why the global spatial mutual information is so little affected by the
relevant first two partial terms. The partial information terms at distance intervals
w3 to w6 cover wide distance ranges, due to the observation window size, and are
low, detecting very little influence of space on such wide ranges, away from small
distances. The weights for w3 and w4 are the highest, while those for w5 and w6

are low because at great distances many couples are discarded as they lie outside
the Emilia Romagna boundaries.

Spatial partial residual entropies (7) in Table 3, third line, receive a straight-
forward interpretation: they express the residual amount of entropy of Z (and
consequently of X) after taking space into account. Complementarily to the par-
tial information terms, the partial residual entropies are lower for distance ranges
w1 and w2 and higher for the other four classes. A peak is present in the spatial
residual entropy at w3, which is the distance class with the highest weight; more-
over, the spatial partial information for this class is higher than the one for class
w4, as Table 3 shows. Besides, there is an abrupt decrease in partial information
from w2 to w3. This suggests that class w3 may be internally heterogeneous as
regards the role of space and may need to be further investigated.

For these reasons, the distance ranges are modified in order to better suit the
suggestions coming from data: distance w3 is further split in three sub-classes,
while distance w5 and w6 are aggregated, since the two corresponding partial
entropy values are nearly identical and classes have small weights. The results
obtained according to the second option are reported in Table 4. It shows how
the second option for the distance classes is more suitable for the dataset under
study. Former class w3 is divided into one small class, similar to w1 and w2,
one intermediate class and one wide class (new classes w3, w4, w5). This way, a
smoother trend in the spatial partial information terms and spatial partial residual
entropies may be appreciated, showing that space plays a relevant role also at
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Fig. 9 Partial information (grey areas) and partial residual entropies (white areas) in propor-
tional terms for the two distance options.

distances greater than 2. Moreover, aggregating the former very similar w5 and
w6 into a new w7 does not lead to a loss of information.

A comparison of the two options for the distance classes is in Figure 9: at each
distance class, the sum PI(Z|wk)+H(Z|wk) is set to 1, so that the contribution of
space may be appreciated in proportional terms and is comparable. It is immediate
to see that space explains one fifth of the data entropy at short distances, and that
the second option is better in this context as it allows to grasp the gradual decrease
of the role of space as distance increases. Therefore, it can be concluded that spatial
association plays a relevant role in explaining the behaviour of land use data in
Emilia Romagna up to a distance of d = 15 pixels.

The above considerations constitute an example of how scientists should pro-
ceed when studying the spatial entropy of specific datasets: the initial choice for the
distance classes may be refined as wished, until reaching a satisfactory conclusion,
without affecting the global terms.

5.2 A comparison to O’Neill’s and Leibovici’s entropies

The latter option for categorizing W is used for comparison to O’Neill’s and Lei-
bovici’s entropy.

O’Neill’s entropy is H(Z|w(01)) = 1.563 and is comparable to H(Z|w1) = 1.421
(Table 4) except for order preservation. As explained in Sections 3.2.1 and 3.2.2,
the value 1.563 has major interpretation limitations. It is greater than H(Z|w1)
because, due to order preservation, the number of categories of Z is higher; there-
fore, this does not necessarily detect a greater residual entropy. Because of the
non-uniqueness of Shannon’s entropy of Z when order is preserved, a quantifi-
cation of the information due to space is not possible. Besides, O’Neill’s entropy
gives no information available about distances greater than 1. In addition, no mea-
sure of the contribution of space is provided, while the range-occurrence approach
measures it as PI(Z|w1) = 0.338 in Table 4.

Leibovici’s entropy is computed with d = 15, since this value collects distances
at which partial spatial information is greater than 0.1 (up to w4 in Table 4). The
entropy is H(Z|w(0d)) = 1.907. The possibility of choosing d makes this index more
flexible, thus preferable to O’Neill’s entropy. However, all the above considerations
concerning interpretation limitations hold here, irrespective of the chosen d. This
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result is hard to interpret and is aggregate, without the possibility to split it for
deeper inspection.

6 Discussion and conclusions

This paper presents innovations, substantial add-ons and discussion about a set of
spatial entropy measures illustrated in Section 3. The range-occurrence approach
allows to exploit the full probabilistic framework provided in Information Theory
and to satisfy several crucial features.

The first innovation of this paper is methodological: the approach, originally
proposed for pairs of realizations of X (Altieri et al 2017), is now extended to a
general degree of co-occurrences, i.e. sets of three, four and so on. The method is ex-
tremely flexible and suitable for many applications. The idea initially proposed by
Leibovici (2009) is here modified to discard the spatial order within co-occurrences
and is employed for decomposing Shannon’s entropy of Z and interpreting spatial
mutual information.

The second innovation is the illustration of both theoretical and practical ad-
vantages of discarding the spatial order within co-occurrences. We show how the
standard way of computing spatial entropy based on the transformed variable
Z implies order preservation within co-occurrences and has major disadvantages,
in particular the non-uniqueness of Shannon’s entropy of Z with consequent in-
terpretability limitations. The choice of discarding order is reasonable in spatial
analysis, where the interest lies in understanding the spatial heterogeneity of data
over a specific area, while spatial phenomena are not usually assumed to have a
direction. Besides, neglecting the order improves the ability to recognize spatial
patterns, while standard indices, based on order preservation, are not usually able
to detect the presence of a negative spatial association. Moreover, when order is
discarded, Shannon’s entropy of Z does not depend on any spatial configuration
and is unique. Thus, it can be used as a reference value for interpreting spatial
mutual information and spatial residual entropy.

Results of the present paper highlight the difference between the main approach
presented here and O’Neill’s and Leibovici’s approach. The latter is well established
in the literature and constitutes an alternative option to the theory of Section 3;
based on results in our work, we recommend to choose between such indices with
care and awareness about the consequences in the results.

As a third contribution, a novel detailed procedure is proposed for building
the variable Z for a generic degree of co-occurrences. Traditional spatial statistical
tools are exploited, such as adjacency matrices, and helpful guidelines are provided
for practical work. The procedure sheds light on building Z, which was a black
box in previous papers.

In addition, a comparison to standard spatial entropy measures (O’Neill et al
1988; Li and Reynolds 1993; Leibovici 2009; Leibovici et al 2014; Parresol and
Edwards 2014) is carried out, both in commenting the theory and in the simulation
study. All these measures are affected by the choice of the distance range and do
not allow any deeper inspection. Conversely, the property of additivity of the
range-occurrence approach enriches interpretation and constitutes a substantial
theoretical improvement: the partial terms are very flexible in identifying the most
informative distances to explain the phenomenon under study. When global spatial
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mutual information and spatial residual entropy are computed, probabilities of
range-occurrences at different distance classes, p(zr|wk), are weighted by p(wk),
the probability of each distance class, so that the relative weight of all distances
is respected. Therefore, the definition of equal-sized distance classes with constant
probabilities is not required. The categories of W must be proposed according to
the context, as the less interesting distances should be aggregated while the most
relevant ones ought to be considered with more detail.

A further contribution, that can be appreciated from the simulation study, is
to validate the set of measures via their performance. Results from Section 4 show
that spatial mutual information and spatial residual entropy represent a complete
and powerful statistical tool to study the heterogeneity of spatial data: they are
able to correctly quantify the contribution of space to the entropy of a dataset
for any spatial configuration and any number of categories of the study variable.
Moreover, they allow easy interpretability and delivery of results.

Lastly, the methodology is here applied to land use data: at the global level,
the contribution of space to the computed entropy is very low. The decomposition
into partial terms allows to identify distances which are relevant in understanding
the data behaviour, where the partial information terms are greater than zero.
The role of space decreases smoothly as distance increases, where most of the data
heterogeneity is due to other sources. A comparison to standard spatial entropy
measures (O’Neill et al 1988; Li and Reynolds 1993; Leibovici 2009; Leibovici et al
2014; Parresol and Edwards 2014), each only producing a single number, once
more shows the enrichments of the range-occurrence approach. The application
presented in Section 5 provides a complete toolbox for analyzing spatial data where
distance is believed to play a role in determining the heterogeneity of the outcomes.
The first step consists in computing Shannon’s entropy of Z as a reference value.
Secondly, spatial mutual information is computed and its proportional version
identifies the overall role of space. Alternative options for the distance classes can
be suitably defined in order to investigate the partial information terms, which
help to understand whether space plays a relevant role at each distance class,
while spatial partial residual entropies focus on the heterogeneity of the study
variable due to other sources. The comparison of partial terms across distances is
also helpful to grasp the spatial heterogeneity of the study variable.
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