We consider the p-Laplacian equation -Delta(p)u = 1 for 1 < p < 2, on a regular bounded domain Omega subset of R-N, with N >= 2, under homogeneous Dirichlet boundary conditions. In the spirit of Alexandrov's Soap Bubble Theorem and of Serrin's symmetry result for the overdetermined problems, we prove that if the mean curvature H of partial derivative Omega is constant, then Omega is a ball and the unique solution of the Dirichlet p-Laplacian problem is radial. The main tools used are integral identities, the P-function, and the maximum principle.

The Soap Bubble Theorem and a $ p $-Laplacian overdetermined problem

Colasuonno, Francesca;Ferrari, Fausto
2020

Abstract

We consider the p-Laplacian equation -Delta(p)u = 1 for 1 < p < 2, on a regular bounded domain Omega subset of R-N, with N >= 2, under homogeneous Dirichlet boundary conditions. In the spirit of Alexandrov's Soap Bubble Theorem and of Serrin's symmetry result for the overdetermined problems, we prove that if the mean curvature H of partial derivative Omega is constant, then Omega is a ball and the unique solution of the Dirichlet p-Laplacian problem is radial. The main tools used are integral identities, the P-function, and the maximum principle.
2020
Colasuonno, Francesca; Ferrari, Fausto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/714862
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact