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THE SOAP BUBBLE THEOREM AND A p-LAPLACIAN1

OVERDETERMINED PROBLEM2

FRANCESCA COLASUONNO AND FAUSTO FERRARI3

Abstract. We consider the p-Laplacian equation −∆pu = 1 for 1 < p < 2, on

a regular bounded domain Ω ⊂ RN , with N ≥ 2, under homogeneous Dirichlet

boundary conditions. In the spirit of Alexandrov’s Soap Bubble Theorem and

of Serrin’s symmetry result for the overdetermined problems, we prove that
if the mean curvature H of ∂Ω is constant, then Ω is a ball and the unique

solution of the Dirichlet p-Laplacian problem is radial. The main tools used

are integral identities, the P -function, and the maximum principle.

1. Introduction4

The celebrated Alexandrov’s Soap Bubble Theorem [2], dated back to 1958,5

states that if Γ is a compact hypersurface, embedded in RN , having constant mean6

curvature, then Γ is a sphere. On the other hand, Serrin’s symmetry result (1971)7

[26] for the following overdetermined problem8

−∆u = 1 in Ω, u = 0 on ∂Ω, (1.1)

9

uν = c on ∂Ω, (1.2)

where Ω ⊂ RN is a bounded domain and uν is the outer normal derivative, states10

that if (1.1)–(1.2) has a solution, then Ω must be a ball, and the unique solution u11

must be radial. It is nowadays well-known that these two results are strictly related.12

Indeed, for his proof, Serrin adapted to the PDEs the reflection principle, a geomet-13

rical technique introduced by Alexandrov in [2], and combined it with the maximum14

principle, giving rise to a very powerful and versatile tool, the moving plane method.15

This method is still very much used, since it can be successfully applied to a large16

class of PDEs. Besides the common techniques used, the link between these two17

results has been further highlighted by Reilly in [25], where the author proposed18

an alternative proof of the Soap Bubble Theorem, considering the hypersurface Γ19

as a level set (i.e., ∂Ω) of the solution of (1.1). For his proof, Reilly found and20

exploited a relation between the Laplacian operator and the geometrical concept of21

mean curvature. Interestingly enough, Serrin’s result for the overdetermined prob-22

lem has been proved via a different technique by Weinberger in a two-page paper23

[29] that was published in the same volume of the same journal as the paper by24

Serrin [26]. Weinberger’s proof is much simpler, it relies on some integral identities,25

the maximum principle, and the introduction of an auxiliary function, the so-called26

P -function. Even if Weinberger’s technique is less flexible than the moving plane27

Date: July 11, 2019.
2010 Mathematics Subject Classification. 35J92, 35B06, 35N25, 53A10, 35A23.
Key words and phrases. Alexandrov’s Soap Bubble Theorem, Serrin-type result for overdeter-

mined p-Laplacian problems, p-torsional problem, P -function, Radial symmetry results.
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2 F. COLASUONNO AND F. FERRARI

method, it lends itself well to being re-read in quantitative terms. Recently, using1

this approach, Magnanini and Poggesi in [17, 18, 19, 22] proved the stability both2

for the Alexandrov’s Soap Bubble Theorem and for Serrin’s result, cf. also [21].3

Also the moving plane method has been reformulated in a quantitative version to4

get the stability of both Serrin’s result, cf. [1], and [8] where the best estimate5

obtained so far with this method appears, and Alexandrov’s Theorem, cf. [10]. In6

those stability results, the idea is to measure how much Ω is close to being a ball by7

estimating from above the difference re−ri (re and ri being the radii of two suitable8

balls such that Bre ⊂ Ω ⊂ Bri) in terms of the deviation of the normal derivative9

uν from being constant on ∂Ω, or in terms of the deviation of the mean curvature H10

from being constant on Γ. Furthermore, under more general assumptions, without11

any hypotheses on the domain, Ciraolo and Maggi in [7] proved a stability result12

for Alexandrov’s Theorem using the torsion potentials. Other stability issues for13

the Serrin problem have been treated in [4].14

Serrin’s symmetry result has been extensively studied and generalized also to the15

case of quasilinear problems. For the p-Laplacian operator ∆pu = div(|∇u|p−2∇u),16

1 < p <∞, it has been proved that if the following problem17 
−∆pu = 1 in Ω,

u = 0 on ∂Ω,

|∇u| = c on ∂Ω for some c > 0

(1.3)

admits a weak solution in the bounded domain Ω ⊂ RN , then Ω is a ball. Garofalo18

and Lewis [14] proved this result via Weinberger’s approach; Brock and Henrot19

[6] proposed a different proof via Steiner symmetrization for p ≥ 2; Damascelli20

and Pacella [11] succeeded in adapting the moving plane method to the case 1 <21

p < 2. Finally, Bianchini and Ciraolo in [3] proved the result for every p, in a22

framework which is possibly anisotropic, using Newton’s inequality. Later, many23

other refinements and generalizations have been proposed in [13, 12, 5] for more24

general operators, and in [20, 9] for the case of convex cones.25

In this paper, we consider the following Dirichlet p-Laplacian problem26 {
−∆pu = 1 in Ω,

u = 0 on ∂Ω,
(1.4)

for 1 < p < 2. Here Ω ⊂ RN is a smooth bounded domain and N ≥ 2. Due27

to its physical meaning, (1.4) is often referred to as p-torsion problem. For this28

problem, existence and uniqueness of the solution can be easily proved via the29

Direct Method of the Calculus of Variations and using the strict convexity of the30

action functional associated, see Section 2. In the spirit of Reilly’s result, we regard31

the hypersurface Γ of Alexandrov’s Theorem as the level set ∂Ω of the solution of32

(1.4) and we obtain, for smooth hypersurfaces, an alternative proof of the Soap33

Bubble Theorem. As a consequence, we prove the equivalence of the Soap Bubble34

Theorem to the Serrin-type symmetry result for the overdetermined problem (1.3),35

when 1 < p < 2. We state here our main results.36

Theorem 1.1. Let Γ ⊂ RN be a C2,α surface which is the boundary of a bounded37

domain Ω ⊂ RN , i.e. Γ = ∂Ω, and denote by H = H(x) the mean curvature of ∂Ω.38

Suppose that 1 < p < 2, that u solves (1.4), and that the set of critical points of u39

has zero measure. Then the following statements are equivalent:40
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a. Ω is a ball;1

b. |uν(x)|p−2uν(x) = − 1
NH(x) for every x ∈ ∂Ω;2

c. u is radial;3

d. H(x) = H0 for every x ∈ ∂Ω.4

Moreover, if one of the previous ones holds, then5

e. |∇u(x)| =
(

1
NH0

) 1
p−1

for every x ∈ ∂Ω.6

The implication d. ⇒ a. in the previous theorem is a special case of the Soap7

Bubble Theorem of Alexandrov. We further observe that from the proof of the8

previous theorem, cf. formula (3.4), it results that if d. holds, then Ω must be a9

ball of radius R0 = 1/H0. Moreover, the fact that any of the statements a., b.,10

c., or d. implies e. is a simple consequence of the previous results, but we know11

that the converse implication e. ⇒ a. holds as well: as proved in [14, 13, 12], the12

overdetermined problem (1.3) admits a solution only if Ω is a ball of radius R0.13

This allows us to state the equivalence of the Soap Bubble Theorem and of the14

Serrin-type result for the overdetermined p-Laplacian problem (1.3) under suitable15

regularity assumptions, in the case 1 < p < 2.16

Corollary 1.2. Under the assumptions of Theorem 1.1, statements a., b., c., d.,17

and e. are all equivalent.18

Our proof technique takes inspiration from [17] and follows the approach of19

Weinberger. After having introduced the P -function (2.5) in terms of the solution20

of (1.4), we derive the integral identity (2.7) using the Divergence Theorem. The21

identity (2.7) will be a key tool for the estimates in the rest of the paper. We22

recall then that the p-Laplacian of a smooth function can be expressed as the trace23

of a matrix-operator applied to the same function, cf. (2.2), and we use a simple24

algebraic inequality (2.11) (known as Newton’s inequality) to get an estimate of25

the p-Laplacian of a function. This suggests us to introduce in (3.1) the integral26

Ip(u) which will play the role of the so-called Cauchy-Schwarz deficit in [17] for the27

linear case p = 2. In view of Newton’s inequality, the integral Ip(u) has a sign, it is28

always non-negative. Now the P -function comes into play: thanks to the fact that29

it satisfies a maximum principle, we can prove that, when 1 < p < 2, Ip(u) vanishes30

only on radial solutions of (1.4), cf. Lemma 2.6. This, combined with the integral31

identity (2.7), allows us to obtain an estimate from above of Ip(u) in terms of some32

boundary integrals involving only the mean curvature H and the normal derivative33

uν , see Theorem 3.1. Then Theorem 1.1 and Corollary 1.2 are easy consequences:34

Ip(u) is zero (or equivalently the solution of (1.4) is radial) if and only if the mean35

curvature H is constant on ∂Ω or the modulus of the gradient of u is constant on36

∂Ω. Finally, in Corollary 3.6, we give an estimate from above of the integral Ip(u)37

in terms of the L1(∂Ω)-norm of the deviation of H from being constant and some38

constants which only depend on the geometry of the problem, cf. (3.6).39

The paper is organized as follows: in Section 2 we introduce some useful notation,40

the P -function, some known results, and some preliminary lemmas. In Section 341

we prove Theorem 1.1 and its consequences, while in Section 4, we present some42

comments on the stability for the p-overdetermined problem.43



4 F. COLASUONNO AND F. FERRARI

2. Preliminaries1

We first introduce the main important quantities and notation involved. Through-2

out the paper, with abuse of notation, we use the symbol | · | to denote both the3

N -dimensional and the (N−1)-dimensional Lebesgue measures. We further denote4

by ‖ · ‖ the Frobenius matrix norm and by 〈·, ·〉 the scalar product in RN .5

The p-Laplacian on non-critical level sets of u. The p-Laplacian of a regular6

function v can be expressed as follows7

∆pv = |∇v|p−2

(
∆v + (p− 2)

〈D2v∇v,∇v〉
|∇v|2

)
, (2.1)

where D2v denotes the Hessian matrix of v. Moreover, we recall that, in view of8

(2.1), it is possible to express the p-Laplacian of any C2-function v as follows9

∆pv = |∇v|p−2

(
∆v + (p− 2)〈D2v

∇v
|∇v|

,
∇v
|∇v|

〉
)

= |∇v|p−2

Tr(D2v) +
p− 2

|∇v|2
N∑

i,j=1

∂2v

∂xi∂xj

∂v

∂xi

∂v

∂xj


= |∇v|p−2

[
Tr(D2v) + (p− 2)Tr

(
∇v
|∇v|

⊗ ∇v
|∇v|

·D2v

)]
= Tr

[
|∇v|p−2

(
I + (p− 2)

∇v
|∇v|

⊗ ∇v
|∇v|

)
D2v

]
,

(2.2)

where we have denoted simply by I the N ×N identity matrix.10

Let u be a solution of (1.4). We denote by ν the following vector field

ν = − ∇u
|∇u|

,

which coincides with the external unit normal on ∂Ω, being u|∂Ω
constant. The

mean curvature of the regular level sets of u is given by

H = − 1

N − 1
div
∇u
|∇u|

.

It is possible to see that, on non-critical level sets of u, the Laplacian of u can11

be expressed in terms of H as follows12

∆u = uνν + (N − 1)Huν , (2.3)

where uν = ∇u · ν = −|∇u| and uνν = 〈D2u ν, ν〉. Therefore, on non-critical level13

sets of u, we can write the p-Laplacian as14

∆pu = |uν |p−2 [(p− 1)uνν + (N − 1)Huν ] . (2.4)

The P -function. In terms of a solution u of (1.4), we can define the so-called15

P -function as16

P :=
2(p− 1)

p
|∇u|p +

2

N
u a.e. in Ω, (2.5)

we refer to [27, Chapter 7, formula (7.6) with v(q) = q
p−2

2 and q = |∇u|2] for its17

derivation. The main feature of P is that it satisfies a maximum principle, which18

is the starting point for finding useful bounds for the main quantities involved in19

this problem.20
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Definition 2.1. Let Ω ⊂ RN be a bounded domain. Ω satisfies the interior1

sphere condition if for every x ∈ ∂Ω there exist x0 ∈ Ω and r > 0 such that2

Br(x0) := {y ∈ RN : |y − x0| < r} ⊂ Ω and x ∈ ∂Br(x0).3

We recall that if Ω is a C2 bounded domain, then it satifies the interior sphere4

condition.5

Lemma 2.2. Let Ω be of class C1,α and satisfy the interior sphere condition. If u6

solves (1.4), then P is either constant in Ω̄ or it satisfies Pν > 0 on ∂Ω.7

Proof. The proof of this lemma is given in [13, Lemma 3.2] for a solution of the8

overdetermined problem (1.3); we report the outline of the proof here in order to9

highlight that it continues to hold even if u does not satisfy |∇u| = const. on ∂Ω.10

Since u solves (1.4), then by [24, Theorem 3.2.2], u ≥ 0 a.e. in Ω and by11

[16, Theorem 1], u is of class C1,α(Ω̄). Now, [28, Theorem 5] guarantees that12

|∇u| ≥ min∂Ω |∇u| > 0 on ∂Ω. By continuity, |∇u| 6= 0 in a closed neighborhood13

D ⊂ Ω̄ of ∂Ω.14

Now, suppose that P is not constant in Ω̄. Under this assumption, as in [13,15

Lemma 3.2 - Claim - Step 2], it is possible to prove that P attains its maximum16

on ∂Ω and that, if P also attains its maximum at a point x̄ ∈ Ω, then necessarily17

∇u(x̄) = 0. Therefore, being D ⊂ Ω̄ a closed neighborhood of ∂Ω, P attains its18

maximum in D only on ∂Ω. By the proof of [13, Lemma 3.2], we know that P19

satisfies in D a uniformly elliptic equation and so it satisfies the classical Hopf’s20

lemma. Hence, Pν > 0 on ∂Ω. �21

For future use, we derive here an easy identity holding true for any u solution of22

(1.4). By integration by parts, the Divergence Theorem, and (2.3) we get23 ∫
Ω

〈|∇u|p−2∇u,∇∆u〉dx = −
∫

Ω

∆pu∆udx+

∫
∂Ω

∆u|∇u|p−2∇u · νdσ

=

∫
Ω

∆udx+

∫
∂Ω

∆u|uν |p−2uνdσ

=

∫
∂Ω

uνdσ +

∫
∂Ω

|uν |p−2uν [uνν + (N − 1)Huν ]dσ

=

∫
∂Ω

uνdσ −
∫
∂Ω

|uν |p−1uννdσ + (N − 1)

∫
∂Ω

H|uν |pdσ,

(2.6)
where we used that ∂Ω is a non-critical level set of u, as showed in the proof of24

Lemma 2.2.25

Reference constant mean curvature and reference domain. We introduce26

here some reference geometric constants which are related to problem (1.4). These27

constants will be useful to compare problem (1.4) with the same problem set in a28

ball instead of a general domain Ω.29

By Minkowski’s identity, i.e.,∫
∂Ω

H(x)〈x− z, ν(x)〉dσ = |∂Ω| for any z ∈ RN ,

we get, by the Divergence Theorem and if H is constant:

|∂Ω| = H

∫
∂Ω

〈x− z, ν(x)〉dσ = H

∫
Ω

N∑
i=1

∂(x− z)i
∂xi

dx = H|Ω|N.
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If H is not constant, we can take as reference constant mean curvature the quantity

H0 :=
|∂Ω|
N |Ω|

and, as reference domain, a ball of radius

R0 =
1

H0
=
N |Ω|
|∂Ω|

.

1

Existence and uniqueness for (1.4). Problem (1.4) has a variational structure

with associated action functional I : W 1,p
0 (Ω)→ R given by

I(u) :=

∫
Ω

(
1

p
|∇u|p − u

)
dx.

By strict convexity and the Direct Method of Calculus of Variations, it is possible2

to prove that I has a unique minimizer. Hence, (1.4) has a unique weak solution3

u ∈W 1,p
0 (Ω).4

From now on in the paper, we denote by C the critical set of the solution u of
problem (1.4), namely

C := {x ∈ Ω : |∇u(x)| = 0}.
By [13, Lemma 3.1], we know that the solution u of (1.4) is of class C2,α(Ω̄ \ C).5

Therefore, hereafter we assume that Ω is of class C2,α in order to guarantee that6

the solution u of (1.4) is of class C2,α in a neighborhood of ∂Ω (this is a consequence7

of the regularity of u and of the first part of the proof of Lemma 2.2).8

Lemma 2.3. Let u solve (1.4) and suppose that its critical set C has zero N -9

dimensional measure. The following identity holds10 ∫
Ω

{
(p− 1)|∇u|p−2

[
(p− 2)

∥∥∥∥D2u
∇u
|∇u|

∥∥∥∥2

+ ‖D2u‖2 + 〈∇u,∇∆u〉

]
+

∆u

N

}
dx

= −
∫
∂Ω

(N − 1)

(
1

N
uν +H|uν |p

)
dσ

(2.7)

Proof. By straightforward calculations, we get11

Pν = ∇P · ν = 2uν

(
(p− 1)|uν |p−2uνν +

1

N

)
, (2.8)

cf. [27, formula (7.7)] with f ≡ w ≡ 1, α = 2/N , q = |∇u|2, and v(q) = q(p−2)/2.12

By taking into account (2.3), (2.4), and the equation in (1.4), we can rewrite Pν as13

14

Pν = 2uν

(
∆pu− (N − 1)H|uν |p−2uν +

1

N

)
= −2(N − 1)

(
1

N
uν +H|uν |p

)
.

(2.9)

Moreover,1

∆P = 2

{
(p− 1)|∇u|p−2

[
(p− 2)

∥∥∥∥D2u
∇u
|∇u|

∥∥∥∥2

+ ‖D2u‖2 + 〈∇u,∇∆u〉

]
+

∆u

N

}
(2.10)
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cf. [27, formula (7.9)]. The conclusion then follows, since
∫

Ω
∆Pdx =

∫
∂Ω
Pνdσ, by2

the Divergence Theorem. �3

Proposition 2.4 (Newton’s inequality). Let n ∈ N and A be a (n × n)-matrix,4

then5

‖A‖2 ≥ (Tr(A))2

n
, (2.11)

where denotes Tr(·) the trace of a matrix. Furthermore, the equality holds in (2.11)6

if and only if A = kIn for some constant k.7

Proof. The proof is standard, but we report it here for the sake of completeness.8

The statement is trivial for n = 1. We proceed by induction on n ≥ 2. If we denote9

by aij the elements of the matrix A, we obtain for n = 2 that10

(Tr(A))2 = (a11 + a22)2 = a2
11 + a2

22 + 2a11a22 ≤ 2(a2
11 + a2

22) ≤ 2‖A‖2, (2.12)

where we have used that 2a11a22 ≤ a2
11 + a2

22, being (a11 − a22)2 = a2
11 + a2

22 −11

2a11a22 ≥ 0. As a consequence, we observe that (2.12) holds with the equality signs12

if and only if a11 = a22 and a12 = a21 = 0. We now assume that (2.11) holds true13

for n and we prove it for n+ 1. Indeed,1

(Tr(A))2 =

(
n+1∑
i=1

aii

)2

=

(
n∑
i=1

aii + an+1,n+1

)2

=

(
n∑
i=1

aii

)2

+ 2

(
n∑
i=1

aii

)
an+1,n+1 + a2

n+1,n+1

≤ n
n∑
i=1

a2
ii + n

n∑
i, j=1
i6=j

a2
ij + 2

(
n∑
i=1

aii

)
an+1,n+1 + a2

n+1,n+1.

(2.13)

Now, as above, we can estimate

2

(
n∑
i=1

aii

)
an+1,n+1 =

n∑
i=1

2aiian+1,n+1

≤
n∑
i=1

(a2
ii + a2

n+1,n+1) = na2
n+1,n+1 +

n∑
i=1

a2
ii,

where the equality is achieved only for aii = an+1,n+1 for every i = 1, . . . , n.
Therefore, combining this estimate with (2.13), we obtain

(Tr(A))2 ≤ n
n∑
i=1

a2
ii + a2

n+1,n+1 + na2
n+1,n+1 +

n∑
i=1

a2
ii + n

n∑
i, j=1
i6=j

a2
ij

= (n+ 1)

n∑
i=1

a2
ii + (n+ 1)a2

n+1,n+1 + n

n∑
i, j=1
i6=j

a2
ij

= (n+ 1)

n+1∑
i=1

a2
ii + n

n∑
i, j=1
i6=j

a2
ij ≤ (n+ 1)

n∑
i, j=1

a2
ij ,
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where the equalities hold only when A = kIn+1 for some constant k, and the proof2

is complete. �3

Corollary 2.5. Let v be any C2-function, then the following inequality holds4

(∆pv)2 ≤ N |∇v|2(p−2)

∥∥∥∥(I + (p− 2)
∇v
|∇v|

⊗ ∇v
|∇v|

)
D2v

∥∥∥∥2

. (2.14)

Proof. Taking into account (2.2), it is enough to apply Proposition 2.4 with n := N5

and A := |∇v|p−2
(

I + (p− 2) ∇v|∇v| ⊗
∇v
|∇v|

)
D2v. �6

For every z ∈ RN and r > 0, we introduce the function7

wr(x) := − p− 1

pN
1

p−1

(
|x− z|

p
p−1 − r

)
for every x ∈ Ω. (2.15)

We observe that, if z ∈ Ω and p > 2, then wr 6∈ C2. Clearly, wr is radial about z,
and, if Ω = Br(z), it solves (1.4). Indeed, by straightforward calculations we get

∇wr = −N−
1

p−1 |x− z|
p

p−1−2(x− z),

|∇wr|p−2∇wr = − 1

N
(x− z),

and so

∆pwr = div

(
− 1

N
(x− z)

)
= −1.

We are now ready to prove the following result.8

Lemma 2.6. Let 1 < p < 2, then the following statements hold true.9

(i) Let wr be defined as in (2.15), then for v := wr the equality holds in (2.14).10

(ii) Let u solve (1.4). Suppose that the critical set C of u has zero N -dimensional11

measure and that for v := u the equality holds in (2.14) for every x ∈ Ω\C.12

Then u is radial.1

Proof. (i) Since

∂2wr
∂xi∂xj

= −N−
1

p−1

[
2− p
p− 1

|x− z|
p

p−1−4(xj − zj)(xi − zi) + δij |x− z|
p

p−1−2

]
,

the Hessian of wr has the following expression

D2wr = −N−
1

p−1 |x− z|
2−p
p−1

(
2− p
p− 1

· x− z
|x− z|

⊗ x− z
|x− z|

+ I

)
.

By (
x− z
|x− z|

⊗ x− z
|x− z|

)2

=
x− z
|x− z|

⊗ x− z
|x− z|

and
∇wr
|∇wr|

=
x− z
|x− z|

,

we get

|∇wr|p−2

(
I + (p− 2)

∇wr
|∇wr|

⊗ ∇wr
|∇wr|

)
D2wr

= −|x− z|
2−p
p−1 +( p

p−1−1)(p−2)

N

[
I +

(
2− p
p− 1

− (p− 2)2

p− 1
+ p− 2

)
x− z
|x− z|

⊗ x− z
|x− z|

]
= − 1

N
I.
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Hence, by Proposition 2.4, (2.14) holds with the equality sign for v := wr.2

(ii) By Proposition 2.4, we know that the equality holds in (2.14) if and only if

|∇u|p−2

(
I + (p− 2)

∇u
|∇u|

⊗ ∇u
|∇u|

)
D2u = kI

for some constant k. By
∥∥∥(2− p) ∇u|∇u| ⊗

∇u
|∇u|

∥∥∥ = |2− p| < 1,

det

(
I− (2− p) ∇u

|∇u|
⊗ ∇u
|∇u|

)
6= 0,

and (
x

|x|
⊗ x

|x|

)i
=

x

|x|
⊗ x

|x|
for all x ∈ RN and all i ∈ N,

we get on Ω \ C3

D2u =
k

|∇u|p−2

(
I− (2− p) ∇u

|∇u|
⊗ ∇u
|∇u|

)−1

=
k

|∇u|p−2

∞∑
i=0

(2− p)i
(
∇u
|∇u|

⊗ ∇u
|∇u|

)i
=

k

|∇u|p−2

(
I +
∇u
|∇u|

⊗ ∇u
|∇u|

∞∑
i=1

(2− p)i
)

=
k

|∇u|p−2

[
I +
∇u
|∇u|

⊗ ∇u
|∇u|

(
1

1− (2− p)
− 1

)]
=

k

|∇u|p−2

(
I− p− 2

p− 1

∇u
|∇u|

⊗ ∇u
|∇u|

)
.

(2.16)

Namely, for i, j = 1, . . . , N

∂2
iju =

k

|∇u|p−2

(
δij −

p− 2

p− 1

∂iu∂ju

|∇u|2

)
.

Hence, in particular,1

∆u =
k

|∇u|p−2

N∑
i=1

(
1− p− 2

p− 1

(∂iu)2

|∇u|2

)
=

k

|∇u|p−2

(
N − p− 2

p− 1

)
. (2.17)

Furthermore, since u solves (1.4), then by (2.16), (2.17), and (2.1), we have

−1 = |∇u|p−2

(
∆u+ (p− 2)

〈
D2u

∇u
|∇u|

,
∇u
|∇u|

〉)
= k

N∑
i=1

(
1− p− 2

p− 1

(∂iu)2

|∇u|2

)
+ (p− 2)

〈
|∇u|p−2D2u

∇u
|∇u|

,
∇u
|∇u|

〉

= k

N∑
i=1

(
1− p− 2

p− 1

(∂iu)2

|∇u|2

)
+ (p− 2)

〈
k

(
I − p− 2

p− 1

∇u
|∇u|

⊗ ∇u
|∇u|

)
∇u
|∇u|

,
∇u
|∇u|

〉
= k

[
N − p− 2

p− 1
+ (p− 2)

(
1− p− 2

p− 1

〈
∇u
|∇u|

⊗ ∇u
|∇u|

∇u
|∇u|

,
∇u
|∇u|

〉)]
= k

[
N − p− 2

p− 1
+ (p− 2)

(
1− p− 2

p− 1

)]
= kN,
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where in the last equality, we have used that

x

|x|
⊗ x

|x|
x

|x|
=

x

|x|
for all x ∈ RN .

Hence, k = − 1
N .2

Now, by the equation in (1.4), (2.17), and (2.3), we get on non-critical level sets
of u

|uν |p−2 [(p− 1)uνν + (N − 1)Huν ] = −1,

uνν + (N − 1)Huν =

(
p− 2

N(p− 1)
− 1

)
1

|uν |p−2
,

being uν = −|∇u|. These two identities give

|uν |p−2uνν = − 1

N(p− 1)

and consequently3

H =
1

N |uν |p−1
on ∂Ω. (2.18)

Now, by Lemma 2.2, we know that either P is constant on Ω̄, or Pν > 0 on ∂Ω. If
the first case occurs, then it is possible to see that all level sets of u are isoparametric
surfaces. In particular, since u satisfies homogeneous Dirichlet boundary conditions,
all level sets must be concentric spheres and so u is radial, cf. [13, Remark 5.5] and
[15, Theorem 5]. If the second case occurs, then by (2.9),

1

N
uν +H|uν |p < 0 on ∂Ω,

therefore, by (2.18),

0 =
1

N
(uν − uν) =

uν
N

+
|uν |
N

< 0 on ∂Ω.

This is impossible and concludes the proof. �4

3. Proof of the main results5

Let u solve (1.4) and suppose that its critical set C has zero N -dimensional6

measure. We introduce the following integral7

Ip(u) :=

∫
Ω

|∇u|(p−2)

∥∥∥∥(I + (p− 2)
∇u
|∇u|

⊗ ∇u
|∇u|

)
D2u

∥∥∥∥2

−

(
∆pu

N1/2|∇u| p−2
2

)2
 dx.

(3.1)

Theorem 3.1. Let 1 < p < 2 and ∂Ω be a C2,α bounded domain of RN . If u solves8

(1.4) and has |C| = 0, then9

(i) Ip(u) ≥ 0 and Ip(u) = 0 if and only if u is radial;10

(ii) Ip(u) ≤ −p(N − 1)

p− 1

∫
∂Ω

(
1

N
uν +H|uν |p

)
dσ;11

(iii) Ip(u) ≤ p(N − 1)

p− 1

∫
∂Ω

|uν |p(H0 −H)dσ.1
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Proof of Theorem 3.1. (i) By (2.14), we know that Ip(u) ≥ 0 and, by Lemma 2.6,2

we know that Ip(u) = 0 if and only if u is radial.3

(ii) First, we observe that a.e. in Ω we have∥∥∥∥(I + (p− 2)
∇u
|∇u|

⊗ ∇u
|∇u|

)
D2u

∥∥∥∥2

=

N∑
i,j=1

(
∂2
iju+ (p− 2)

N∑
k=1

∂iu

|∇u|
∂ku

|∇u|
∂2
kju

)2

= ‖D2u‖2 + 2(p− 2)

N∑
i,j=1

∂2
iju

∂iu

|∇u|

N∑
k=1

∂ku

|∇u|
∂2
kju+ (p− 2)2

N∑
i,j=1

(
N∑
k=1

∂iu

|∇u|
∂ku

|∇u|
∂2
kju

)2

= ‖D2u‖2 + 2(p− 2)

N∑
j=1

(
N∑
i=1

∂iu

|∇u|
∂2
iju

)2

+ (p− 2)2

∥∥∥∥D2u
∇u
|∇u|

∥∥∥∥2

= ‖D2u‖2 + p(p− 2)

∥∥∥∥D2u
∇u
|∇u|

∥∥∥∥2

.

Furthermore, by (2.7), we get

p(p− 2)

∫
Ω

|∇u|p−2

∥∥∥∥D2u
∇u
|∇u|

∥∥∥∥2

dx =− p
∫

Ω

[
|∇u|p−2

(
‖D2u‖2 + 〈∇u,∇∆u〉

)
+

∆u

N(p− 1)

]
dx

− pN − 1

p− 1

∫
∂Ω

(
1

N
uν +H|uν |p

)
dσ.

Hence, using these last two identities, we can rewrite Ip(u) as

Ip(u) =

∫
Ω

{
|∇u|p−2

[
−(p− 1)‖D2u‖2 − p〈∇u,∇∆u〉

]
− p

N(p− 1)
∆u− (∆pu)2

N |∇u|p−2

}
dx

− p(N − 1)

p− 1

∫
∂Ω

(
1

N
uν +H|uν |p

)
dσ.

On the other hand, by (2.1), the C2,α regularity of u in a neighborhood of ∂Ω, and
the Divergence Theorem

−p
∫

Ω

(
|∇u|p−2〈∇u,∇∆u〉+

1

N(p− 1)
∆u

)
dx

=

∫
Ω

−p
(

1 +
1

N(p− 1)

)
∆udx+ p

∫
∂Ω

|∇u|p−1∆udσ

= p

∫
∂Ω

(
1 +

1

N(p− 1)

)
|∇u|(1 + |∇u|p−2∆u)dσ

= −p(p− 2)

(
1 +

1

N(p− 1)

)∫
∂Ω

|∇u|p−1〈D2u
∇u
|∇u|

,
∇u
|∇u|

〉dσ.

Hence,1

Ip(u) =

∫
Ω

{
−(p− 1)|∇u|p−2‖D2u‖2 − (∆pu)2

N |∇u|p−2

}
dx

− p(N − 1)

p− 1

∫
∂Ω

(
1

N
uν +H|uν |p

)
dσ

− p(p− 2)

(
1 +

1

N(p− 1)

)∫
∂Ω

|∇u|p−1〈D2u
∇u
|∇u|

,
∇u
|∇u|

〉dσ.

(3.2)
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In order to estimate from above Ip(u), we want to determine the sign of the last
term in (3.2). By Lemma 2.2, we know that either Pν > 0 on ∂Ω or P is constant
in Ω̄. If the second case occurs, then, as in the proof of Lemma 2.6-(ii), all level sets
of u are concentric spheres, and in particular Ω is a ball. Without loss of generality
we can suppose Ω to be a ball centered in the origin Br, thus, the unique solution
of (1.4) is wr, given in (2.15), with z = 0. Then, by straightforward calculations,
we have for every x ∈ ∂Br

H(x) = − 1

N − 1
div
∇wr
|∇wr|

=
1

N − 1

N∑
i=1

(
1

|x|
− x2

i

|x|3

)
=

1

r

and

(wr)ν(x) = −|∇wr(x)| = − 1

N
1

p−1

r
1

p−1 .

Hence,
1

N
(wr)ν(x) +H(x)|(wr)ν(x)|p = 0 for every x ∈ ∂Br

and the inequality in (ii) is satisfied with the equality sign and we are done. We
consider now the remaining case Pν > 0 on ∂Ω. In this case

(p− 1)|uν |p−2uνν +
1

N
< 0 on ∂Ω

(cf. (2.8) and remember that uν < 0 on ∂Ω), or equivalently

uνν < −
|uν |2−p

N(p− 1)
on ∂Ω.

Hence, uνν < 0 on ∂Ω, and so, when 1 < p < 2, we get

Ip(u) ≤ −p(N − 1)

p− 1

∫
∂Ω

(
1

N
uν +H|uν |p

)
dσ.

(iii) Since u is a solution of (1.4), by Divergence Theorem and Hölder’s inequality
we have

|Ω| =
∫

Ω

−∆pudx = −
∫

Ω

div(|∇u|p−2|∇u)dx = −
∫
∂Ω

|∇u|p−2∇u · νdσ

=

∫
∂Ω

|uν |p−1dσ ≤
(∫

∂Ω

|uν |pdσ
) p−1

p

|∂Ω|
1
p .

By using the definition of H0, the previous estimate reads as(∫
∂Ω

|uν |pdσ
) 1

p′

≥ |Ω|
|∂Ω|

1
p

=
|∂Ω|

1
p′

NH0
.

Consequently, by Hölder’s inequality,

−
∫
∂Ω

uνdσ ≤ ‖uν‖Lp(∂Ω)|∂Ω|
1
p′ ≤ NH0

(∫
∂Ω

|uν |pdσ
) 1

p + 1
p′

= NH0

∫
∂Ω

|uν |pdσ.

By using this inequality, the right-hand side of (2.7) can be estimated as1

−(N − 1)

∫
∂Ω

(
1

N
uν +H|uν |p

)
dσ ≤ (N − 1)

∫
∂Ω

|uν |p(H0 −H)dσ. (3.3)
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Therefore, in view of part (ii) of the present theorem, we have for 1 < p < 2

Ip(u) ≤ p(N − 1)

p− 1

∫
∂Ω

|uν |p(H0 −H)dσ.

This concludes the proof. �2

Remark 3.2. From parts (i) and (iii) of the previous theorem, since |uν |p is bounded
on ∂Ω, we have the following upper bound for the L1-norm of the mean curvature
H of ∂Ω ∫

∂Ω

Hdσ ≤ H0|∂Ω| = |∂Ω|2

N |Ω|
.

The previous theorem allows us to give an alternative proof of the Soap Bubble3

Theorem in the case in which the hypersurface is a level set of the solution of4

problem (1.4).5

Proof of Theorem 1.1. The scheme of the proof is the following: a. ⇒ c. ⇒ b. ⇒6

c. ⇒ a., this proves that a., b. and c. are all equivalent; then we will prove that a.7

⇒ d. ⇒ c., and finally b. ⇒ e.8

a. ⇒ c. If Ω = Br, the only solution of (1.4) is the radial function wr defined in9

(2.15).10

c. ⇒ b. As in the proof of Theorem 3.1-(ii), if the solution of (1.4) is radial,11

Ω = Br for some r > 0, and so u = wr. Hence, by strighforward calculations, b.12

holds true.13

b. ⇒ c. By Theorem 3.1-(ii), we get Ip(u) = 0, which in turn implies that u is14

radial, by Lemma 2.6.15

c. ⇒ a. If u is radial, then Γ = ∂Ω, being a level set of u, is a sphere, and so Ω16

is a ball.17

a. ⇒ d. If Ω = Br for some r > 0, then u = wr and so, for every x ∈ ∂Ω18

H(x) = − 1

N − 1
div
∇wr
|∇wr|

=
1

N − 1

N∑
i=1

(
1

|x|
− x2

i

|x|3

)
=

1

r
=
|∂Br|
N |Br|

= H0. (3.4)

19

d. ⇒ c. By Theorem 3.1-(iii), we get Ip(u) = 0, which in turn implies that u is20

radial, by Lemma 2.6.21

b. ⇒ e. Up to now, we have proved that a., b., c. and d. are equivalent. Thus,
if b. holds, we have by d.

|uν |p−2uν = − 1

NH0
on ∂Ω.

We recall that, on ∂Ω, ν = − ∇u|∇u| and consequently uν = ∇u·ν = −|∇u|. Therefore,

|uν |p−2uν = −|∇u|p−1 = − 1

NH0
on ∂Ω,

which gives e. �22

In the remaining part of this section, we give an upper bound of the integral23

Ip(u) in terms of the L1(∂Ω)-norm of the difference between the mean curvature24

of ∂Ω and the reference constant H0. We start with some preliminary results.1
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Lemma 3.3. Let Ω = A(R1, R2) be an annulus of radii 0 < R1 < R2, then there2

exists a unique R̄ ∈ (R1, R2) such that the positive radial function3

uA(r) :=


∫ r

R1

(
R̄N

NτN−1
− τ

N

) 1
p−1

dτ for every r ∈ [R1, R̄],∫ R2

r

(
τ

N
− R̄N

NτN−1

) 1
p−1

dτ for every r ∈ (R̄, R2]

(3.5)

is of class C1([R1, R2]) and solves (1.4). Furthermore, uA achieves its maximum4

at R̄, where with abuse of notation we have written uA(x) = uA(r) for |x| = r.5

Proof. Suppose first that such R̄ exists and belongs to (R1, R2). In this case, it is
straightforward to verify that the function uA given in (3.5) solves problem (1.4),
which can be written in radial form as{

|u′A|p−2
[
(p− 1)u′′A + N−1

r u′A
]

= −1 in (R1, R2),

uA(R1) = uA(R2) = 0,

where the symbol ′ denotes the derivative with respect to r.6

Now, if we consider the two functions

F1 : ρ ∈ [R1, R2] 7→
∫ ρ

R1

(
ρN

NτN−1
− τ

N

) 1
p−1

dτ ∈ R,

F2 : ρ ∈ [0, R2] 7→
∫ R2

ρ

(
τ

N
− ρN

NτN−1

) 1
p−1

dτ ∈ R,

they have the following properties:

F1(R1) = F2(R2) = 0,

0 < F1(ρ) < +∞ for every ρ ∈ (R1, R2], 0 < F2(ρ) < +∞ for every ρ ∈ [0, R2),

F ′1(ρ) =
1

p− 1

∫ ρ

R1

(
ρN

NτN−1
− τ

N

) 2−p
p−1 (ρ

τ

)N−1

dτ > 0 for every ρ ∈ (R1, R2],

F ′2(ρ) = − 1

p− 1

∫ R2

ρ

(
τ

N
− ρN

NτN−1

) 2−p
p−1 (ρ

τ

)N−1

dτ < 0 for every ρ ∈ [0, R2).

Therefore, there exists a unique ρ = R̄ ∈ (R1, R2) for which F1(R̄) = F2(R̄). This7

concludes the proof. �8

Definition 3.4. A domain Ω ⊂ RN satisfies the uniform interior and exterior9

touching sphere conditions, and we denote with ρi and ρe the optimal interior and10

exterior radii respectively, if for any x0 ∈ ∂Ω there exist two balls Bρi(c
−) ⊂ Ω and11

Bρe(c+) ⊂ RN \ Ω̄ such that x0 ∈ ∂Bρi(c−)∩ ∂Bρe(c+). We call optimal radius the12

minimum between the interior and the exterior radius, ρ := min{ρi, ρe}.13

We observe that is Ω is of class C2, then it satisfies the uniform interior and14

exterior touching sphere conditions.1

Proposition 3.5. Let Ω ⊂ RN be a bounded domain of class C2 and u ∈ C1(Ω̄)
be a solution of (1.4) in Ω. Then(ρi

N

) 1
p−1 ≤ |∇u| ≤

[
(diam(Ω) + ρe)

N

NρN−1
e

− ρe
N

] 1
p−1

on ∂Ω.
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Proof. We follow the ideas in [17, Theorem 3.10]. Let x0 be any point on the
boundary ∂Ω. Without loss of generality, we can place the origin at c−. Thus, the
function

uρi := − p− 1

pN
1

p−1

(
|x|

p
p−1 − ρ

p
p−1

i

)
is the solution of (1.4) in Bρi . Now, being by definition Bρi ⊂ Ω,{

−∆puρi = −∆pu in Bρi ,

uρi ≤ u on ∂Bρi ,

and so, by comparison [13, Lemma 3.7], uρi ≤ u in Bρi . Since uρi(x0) = u(x0), we
have ∂ν(uρi − u)(x0) > 0, where ν is the external unit normal to Bρi . This gives
the first inequality in the statement, namely

|∇u(x0)| ≥
(ρi
N

) 1
p−1

.

On the other hand, let A := A(ρe,diam(Ω) + ρe) be the annulus centered at c+.
By definition, Ω ⊂ A. Again, without loss of generality, we can place the origin at
c+ and consider the function uA whose expression is given by (3.5) with R1 := ρe
and R2 := diam(Ω) + ρe. Reasoning as above we have{

−∆puA = −∆pu in Ω,

uA ≥ u on ∂Ω,

and so uA ≥ u in Ω. Therefore, ∂ν(uA − u)(x0) ≤ 0, being ν the external unit
normal to A. This finally gives

|∇u(x0)| ≤
(

R̄N

NρN−1
e

− ρe
N

) 1
p−1

≤
(

(ρe + diam(Ω))N

NρN−1
e

− ρe
N

) 1
p−1

and concludes the proof. �2

Combining together the results in Proposition 3.5 and Theorem 3.1, we get the3

following corollary.4

Corollary 3.6. Let 1 < p < 2 and Ω ⊂ RN be a C2,α bounded domain. If u solves5

(1.4) and has |C| = 0, the following chain of inequalities holds6

0 ≤ Ip(u) ≤ p(N − 1)

p− 1

[
(diam(Ω) + ρe)

N

NρN−1
e

− ρe
N

] p
p−1

‖H0 −H‖L1(∂Ω). (3.6)

4. Some comments on the stability7

With reference to the result given in Corollary 3.6, we observe that, while Ip(u)8

is related to the solution of problem (1.4), the constant that bounds from above9

Ip(u) in (3.6) depends only on the geometry of the problem. In particular, the10

non-negative integral Ip(u) that vanishes only on radial functions, goes to zero as11

H → H0 in L1(∂Ω). In view of Corollary 3.6, this suggests, at least qualitatively, a12

sort of stability of the Serrin-type result for the overdetermined problem with the13

p-Laplacian.14

In [10], Ciraolo and Vezzoni obtained the following stability result for the Soap15

Bubble Theorem by Alexandrov.1
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Theorem 4.1 (Theorem 1.1 of [10]). Let ∂Ω be a C2-regular, connected, and closed
hypersurface embedded in RN . If

‖H −H0‖L∞(∂Ω) < ε

for some ε > 0 depending only on N , |∂Ω|, and upper bounds on the inverse of the
optimal radius (cf. Definition 3.4) ρ−1 of ∂Ω, then ∂Ω ⊂ B̄re \Bri , with

0 < re − ri ≤ Cε,
where C > 0 depends on N , |∂Ω|, and upper bounds on the inverse of the optimal2

radius ρ−1 of ∂Ω.3

This result gives an estimate of re− ri in terms of the L∞(∂Ω)-norm of H −H0.4

Furthermore, as a consequence, for every 1 < p < ∞, it is possible to compare
the solution u of (1.4) with the radial solutions

ue(x) := − p− 1

pN
1

p−1

(
|x|

p
p−1 − (re)

p
p−1

)
for every x ∈ Bre

and

ui(x) := − p− 1

pN
1

p−1

(
|x|

p
p−1 − (ri)

p
p−1

)
for every x ∈ Bri

of {
−∆pue = 1 in Bre ,

ue = 0 on ∂Bre ,
and

{
−∆pui = 1 in Bri ,

ui = 0 on ∂Bri ,

respectively. Indeed, by the weak comparison principle [13, Lemma 3.7], we easily
get

u ≥ ui in Bri and u ≤ ue in Ω,

giving in particular the following estimate of u in terms of the radial solutions ui
and ue on the interior ball Bri

− p− 1

pN
1

p−1

(
|x|

p
p−1 − (ri)

p
p−1

)
≤ u(x) ≤ − p− 1

pN
1

p−1

(
|x|

p
p−1 − (re)

p
p−1

)
in Bri .

It is quite challenging to obtain an estimate from below of Ip(u) in terms of some5

increasing function of re−ri. This would allow to improve –at least in some relevant6

cases– the stability result in Theorem 4.1, getting a stability result in terms of the7

L1(∂Ω)-norm, instead of the L1(∂Ω)-norm, of H−H0. This approach was proposed8

by Magnanini and Poggesi for the case p = 2 in [17], where the authors used in9

a very clever way the mean value property for harmonic functions. Nevertheless,10

their method works well only in the linear case and seems very difficult to generalize11

it to the case p 6= 2. Some other issues related to the stability of the symmetry12

result for the overdetermined p-Laplacian problem are treated in [23].13
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