Monitoring the upper arm propulsion is a crucial task for swimmer performance. The swimmer indeed can produce displacement of the body by modulating the upper limb kinematics. The present study proposes an approach for automatically recognize all stroke phases through three-dimensional (3D) wrist’s trajectory estimated using inertial devices. Inertial data of 14 national-level male swimmer were collected while they performed 25 m front-crawl trial at intensity range from 75% to 100% of their 25 m maximal velocity. The 3D coordinates of the wrist were computed using the inertial sensors orientation and considering the kinematic chain of the upper arm biomechanical model. An algorithm that automatically estimates the duration of entry, pull, push, and recovery phases result from the 3D wrist’s trajectory was tested using the bi-dimensional (2D) video-based systems as temporal reference system. A very large correlation (r = 0.87), low bias (0.8%), and reasonable Root Mean Square error (2.9%) for the stroke phases duration were observed using inertial devices versus 2D video-based system methods. The 95% limits of agreement (LoA) for each stroke phase duration were always lower than 7.7% of cycle duration. The mean values of entry, pull, push and recovery phases duration in percentage of the complete cycle detected using 3D wrist’s trajectory using inertial devices were 34.7 (± 6.8)%, 22.4 (± 5.8)%, 14.2 (± 4.4)%, 28.4 (± 4.5)%. The swimmer’s velocity and arm coordination model do not affect the performance of the algorithm in stroke phases detection. The 3D wrist trajectory can be used for an accurate and complete identification of the stroke phases in front crawl using inertial sensors. Results indicated the inertial sensor device technology as a viable option for swimming arm-stroke phase assessment.
Cortesi, M. (2019). Inertial Sensors in Swimming: Detection of Stroke Phases through 3D Wrist Trajectory. JOURNAL OF SPORTS SCIENCE AND MEDICINE, 18(3), 438-447.
Inertial Sensors in Swimming: Detection of Stroke Phases through 3D Wrist Trajectory.
Cortesi M.
;Giovanardi A.;Gatta G.;Mangia A. L.;Bartolomei S.;Fantozzi S.
2019
Abstract
Monitoring the upper arm propulsion is a crucial task for swimmer performance. The swimmer indeed can produce displacement of the body by modulating the upper limb kinematics. The present study proposes an approach for automatically recognize all stroke phases through three-dimensional (3D) wrist’s trajectory estimated using inertial devices. Inertial data of 14 national-level male swimmer were collected while they performed 25 m front-crawl trial at intensity range from 75% to 100% of their 25 m maximal velocity. The 3D coordinates of the wrist were computed using the inertial sensors orientation and considering the kinematic chain of the upper arm biomechanical model. An algorithm that automatically estimates the duration of entry, pull, push, and recovery phases result from the 3D wrist’s trajectory was tested using the bi-dimensional (2D) video-based systems as temporal reference system. A very large correlation (r = 0.87), low bias (0.8%), and reasonable Root Mean Square error (2.9%) for the stroke phases duration were observed using inertial devices versus 2D video-based system methods. The 95% limits of agreement (LoA) for each stroke phase duration were always lower than 7.7% of cycle duration. The mean values of entry, pull, push and recovery phases duration in percentage of the complete cycle detected using 3D wrist’s trajectory using inertial devices were 34.7 (± 6.8)%, 22.4 (± 5.8)%, 14.2 (± 4.4)%, 28.4 (± 4.5)%. The swimmer’s velocity and arm coordination model do not affect the performance of the algorithm in stroke phases detection. The 3D wrist trajectory can be used for an accurate and complete identification of the stroke phases in front crawl using inertial sensors. Results indicated the inertial sensor device technology as a viable option for swimming arm-stroke phase assessment.File | Dimensione | Formato | |
---|---|---|---|
jssm-18-438.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
919.81 kB
Formato
Adobe PDF
|
919.81 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.