The Poincaré polynomial of the complement of an arrangement in a non compact group G is a specialization of the G-Tutte polynomial associated with the arrangement. In this article we show two unimodular elliptic arrangements (built up from two graphs) with the same Tutte polynomial, having different Betti numbers.
Pagaria R. (2020). Poincaré polynomial of elliptic arrangements is not determined by the Tutte polynomial. DISCRETE MATHEMATICS, 343(6), 1-4 [10.1016/j.disc.2019.111710].
Poincaré polynomial of elliptic arrangements is not determined by the Tutte polynomial
Pagaria R.
2020
Abstract
The Poincaré polynomial of the complement of an arrangement in a non compact group G is a specialization of the G-Tutte polynomial associated with the arrangement. In this article we show two unimodular elliptic arrangements (built up from two graphs) with the same Tutte polynomial, having different Betti numbers.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
402.99 kB
Formato
Adobe PDF
|
402.99 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.