The Poincaré polynomial of the complement of an arrangement in a non compact group G is a specialization of the G-Tutte polynomial associated with the arrangement. In this article we show two unimodular elliptic arrangements (built up from two graphs) with the same Tutte polynomial, having different Betti numbers.

Pagaria R. (2020). Poincaré polynomial of elliptic arrangements is not determined by the Tutte polynomial. DISCRETE MATHEMATICS, 343(6), 1-4 [10.1016/j.disc.2019.111710].

Poincaré polynomial of elliptic arrangements is not determined by the Tutte polynomial

Pagaria R.
2020

Abstract

The Poincaré polynomial of the complement of an arrangement in a non compact group G is a specialization of the G-Tutte polynomial associated with the arrangement. In this article we show two unimodular elliptic arrangements (built up from two graphs) with the same Tutte polynomial, having different Betti numbers.
2020
Pagaria R. (2020). Poincaré polynomial of elliptic arrangements is not determined by the Tutte polynomial. DISCRETE MATHEMATICS, 343(6), 1-4 [10.1016/j.disc.2019.111710].
Pagaria R.
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 402.99 kB
Formato Adobe PDF
402.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/709619
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact