Arterial calcification is an actively regulated process, with different morphological manifestations. Micro-RNAs emerged as potential regulators of vascular calcification; they may become novel diagnostic tools and be used for a finest staging of the carotid plaque progression. The present study aimed at characterizing the different miRNA-mRNA axes in carotid plaques according to their histological patterns of calcification. Histopathological analysis was performed on 124 retrospective carotid plaques, with clinical data and preoperatory angio-CT. miRNA analysis was carried out with microfluidic cards. Real-time PCR was performed for selected miRNAs validation and for RUNX-2 and SOX-9 mRNA levels. CD31, CD68, SMA, and SOX-9 were analyzed by immunohistochemistry. miRNA levels on HUVEC cells were analyzed for confirming results under in vitro osteogenic conditions. Histopathological analysis revealed two main calcification subtypes of plaques: calcific cores (CC) and protruding nodules (PN). miRNA array and PCR validation of miR-1275, miR-30a-5p, and miR-30d indicated a significant upregulation of miR-30a-5p and miR-30d in the PN plaques. Likewise, the miRNA targets RUNX-2 and SOX-9 resulted poorly expressed in PN plaques. The inverse correlation between miRNA and RUNX-2 levels was confirmed on osteogenic- differentiated HUVEC. miR-30a-5p and miR-30d directly correlated with calcification extension and thickness at angio-CT imaging. Our study demonstrated the presence of two distinct morphological subtypes of calcification in carotid atheromatous plaques, supported by different miRNA signatures, and by different angio-CT features. These results shed the light on the use of miRNA as novel diagnostic markers, suggestive of plaque evolution.

Vasuri F, C.C. (2020). Different histological types of active intraplaque calcification underlie alternative miRNA-mRNA axes in carotid atherosclerotic disease. VIRCHOWS ARCHIV, 476(2), 307-316 [10.1007/s00428-019-02659-w].

Different histological types of active intraplaque calcification underlie alternative miRNA-mRNA axes in carotid atherosclerotic disease

Vasuri F;Ciavarella C;Fittipaldi S;Pini R;Vacirca A;Gargiulo M;Faggioli G;Pasquinelli G
2020

Abstract

Arterial calcification is an actively regulated process, with different morphological manifestations. Micro-RNAs emerged as potential regulators of vascular calcification; they may become novel diagnostic tools and be used for a finest staging of the carotid plaque progression. The present study aimed at characterizing the different miRNA-mRNA axes in carotid plaques according to their histological patterns of calcification. Histopathological analysis was performed on 124 retrospective carotid plaques, with clinical data and preoperatory angio-CT. miRNA analysis was carried out with microfluidic cards. Real-time PCR was performed for selected miRNAs validation and for RUNX-2 and SOX-9 mRNA levels. CD31, CD68, SMA, and SOX-9 were analyzed by immunohistochemistry. miRNA levels on HUVEC cells were analyzed for confirming results under in vitro osteogenic conditions. Histopathological analysis revealed two main calcification subtypes of plaques: calcific cores (CC) and protruding nodules (PN). miRNA array and PCR validation of miR-1275, miR-30a-5p, and miR-30d indicated a significant upregulation of miR-30a-5p and miR-30d in the PN plaques. Likewise, the miRNA targets RUNX-2 and SOX-9 resulted poorly expressed in PN plaques. The inverse correlation between miRNA and RUNX-2 levels was confirmed on osteogenic- differentiated HUVEC. miR-30a-5p and miR-30d directly correlated with calcification extension and thickness at angio-CT imaging. Our study demonstrated the presence of two distinct morphological subtypes of calcification in carotid atheromatous plaques, supported by different miRNA signatures, and by different angio-CT features. These results shed the light on the use of miRNA as novel diagnostic markers, suggestive of plaque evolution.
2020
Vasuri F, C.C. (2020). Different histological types of active intraplaque calcification underlie alternative miRNA-mRNA axes in carotid atherosclerotic disease. VIRCHOWS ARCHIV, 476(2), 307-316 [10.1007/s00428-019-02659-w].
Vasuri F, Ciavarella C, Fittipaldi S, Pini R, Vacirca A, Gargiulo M, Faggioli G, Pasquinelli G
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/708242
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact