Biomass is an interesting candidate raw material for the production of renewable hydrogen. The conversion of biomass into hydrogen can be achieved by several processes. In particular, this short review focuses on the recent advances in glycerol reforming to hydrogen, highlighting the development of new and active catalysts, the optimization of reaction conditions, and the use of non-innocent supports as advanced materials for supported catalysts. Different processes for hydrogen production from glycerol, especially aqueous phase reforming (APR) and steam reforming (SR), are described in brief. Thermodynamic analyses, which enable comparison with experimental studies, are also considered. In addition, research advances in terms of life cycle perspective applied to support R&D activities in the synthesis of renewable H2 from biomass are presented. Lastly, also featured is an evaluation of the studies published, as evidence of the increased interest of both academic research and the industrial community in biomass conversion to energy sources.
Fasolini, A., Cespi, D., Tabanelli, T., Cucciniello, R., Cavani, F. (2019). Hydrogen from Renewables: A Case Study of Glycerol Reforming. CATALYSTS, 9(9), 722-742 [10.3390/catal9090722].
Hydrogen from Renewables: A Case Study of Glycerol Reforming
Fasolini, Andrea;Cespi, Daniele;Tabanelli, Tommaso
;Cavani, Fabrizio
2019
Abstract
Biomass is an interesting candidate raw material for the production of renewable hydrogen. The conversion of biomass into hydrogen can be achieved by several processes. In particular, this short review focuses on the recent advances in glycerol reforming to hydrogen, highlighting the development of new and active catalysts, the optimization of reaction conditions, and the use of non-innocent supports as advanced materials for supported catalysts. Different processes for hydrogen production from glycerol, especially aqueous phase reforming (APR) and steam reforming (SR), are described in brief. Thermodynamic analyses, which enable comparison with experimental studies, are also considered. In addition, research advances in terms of life cycle perspective applied to support R&D activities in the synthesis of renewable H2 from biomass are presented. Lastly, also featured is an evaluation of the studies published, as evidence of the increased interest of both academic research and the industrial community in biomass conversion to energy sources.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.