Product platforms represent an effective strategy implemented by manufacturers to cope with dynamic market demands, decrease lead-time and delay products differentiation. A decision support system (DSS) for product platforms design and selection in high-variety manufacturing is presented. It applies median-joining phylogenetic networks (MJPN) for the platforms design and phylogenetic tree decomposition for platforms selection by determining the product family phylogenetic network and defines the platforms at various levels of assembly corresponding to different trade-offs between number of platforms (variety) and number of assembly/disassembly tasks (customisation effort). Product platforms are reconfigured and customised to derive final product variants. The phylogenetic tree is decomposed in multiple levels, from the native platforms to the final variants. New Platforms Reconfiguration Index (PRI) and Platforms Customisation Index (PCI) were developed as metrics to evaluate the platforms customisation effort. A case study of a large family of plastic valves is used to demonstrate the DSS application. It shows reduction of 60% in platforms variety and increases in platform customisation assembly/disassembly tasks by only 20% leading to significant production and inventory efficiencies and cost savings. This methodology supports companies in the design and selection of best product platforms for high-variety to reduce cost and delivery time.

Product platforms design, selection and customisation in high-variety manufacturing

Galizia, Francesco Gabriele;Bortolini, Marco;Mora, Cristina
2020

Abstract

Product platforms represent an effective strategy implemented by manufacturers to cope with dynamic market demands, decrease lead-time and delay products differentiation. A decision support system (DSS) for product platforms design and selection in high-variety manufacturing is presented. It applies median-joining phylogenetic networks (MJPN) for the platforms design and phylogenetic tree decomposition for platforms selection by determining the product family phylogenetic network and defines the platforms at various levels of assembly corresponding to different trade-offs between number of platforms (variety) and number of assembly/disassembly tasks (customisation effort). Product platforms are reconfigured and customised to derive final product variants. The phylogenetic tree is decomposed in multiple levels, from the native platforms to the final variants. New Platforms Reconfiguration Index (PRI) and Platforms Customisation Index (PCI) were developed as metrics to evaluate the platforms customisation effort. A case study of a large family of plastic valves is used to demonstrate the DSS application. It shows reduction of 60% in platforms variety and increases in platform customisation assembly/disassembly tasks by only 20% leading to significant production and inventory efficiencies and cost savings. This methodology supports companies in the design and selection of best product platforms for high-variety to reduce cost and delivery time.
2020
Galizia, Francesco Gabriele; ElMaraghy, Hoda; Bortolini, Marco; Mora, Cristina
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/688881
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 37
social impact