Dolgachev proves that the ring naturally associated to a generic Laurent polynomial in d variables, d≥ 4, is factorial (Dolgachev, 1980, 1981 [4,5]) (for any field k). We prove a sufficient condition for the ring associated to a very general complex Laurent polynomial in d= 3 variables to be Q-factorial. © 2011 Elsevier B.V.

Bruzzo, U., Grassi, A. (2012). Q-factorial Laurent rings. JOURNAL OF PURE AND APPLIED ALGEBRA, 216(4), 894-896 [10.1016/j.jpaa.2011.10.016].

Q-factorial Laurent rings

Grassi, Antonella
2012

Abstract

Dolgachev proves that the ring naturally associated to a generic Laurent polynomial in d variables, d≥ 4, is factorial (Dolgachev, 1980, 1981 [4,5]) (for any field k). We prove a sufficient condition for the ring associated to a very general complex Laurent polynomial in d= 3 variables to be Q-factorial. © 2011 Elsevier B.V.
2012
Bruzzo, U., Grassi, A. (2012). Q-factorial Laurent rings. JOURNAL OF PURE AND APPLIED ALGEBRA, 216(4), 894-896 [10.1016/j.jpaa.2011.10.016].
Bruzzo, Ugo; Grassi, Antonella
File in questo prodotto:
File Dimensione Formato  
JPAA216-2012.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 243.2 kB
Formato Adobe PDF
243.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/683277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact