The finite volume correction for a mean-field monomer-dimer system with an attractive interaction are computed for the pressure density, the monomer density and the susceptibility. The results are obtained by introducing a two-dimensional integral representation for the partition function decoupling both the hard-core interaction and the attractive one. The next-to-leading terms for each of the mentioned quantities are explicitly derived as well as the value of their sign that is related to their monotonic convergence in the thermodynamic limit.

Finite-size corrections for the attractive mean-field monomer-dimer model

Alberici, Diego;Contucci, Pierluigi;Luzi, Rachele;Vernia, Cecilia
2019

Abstract

The finite volume correction for a mean-field monomer-dimer system with an attractive interaction are computed for the pressure density, the monomer density and the susceptibility. The results are obtained by introducing a two-dimensional integral representation for the partition function decoupling both the hard-core interaction and the attractive one. The next-to-leading terms for each of the mentioned quantities are explicitly derived as well as the value of their sign that is related to their monotonic convergence in the thermodynamic limit.
Alberici, Diego; Contucci, Pierluigi; Luzi, Rachele; Vernia, Cecilia*
File in questo prodotto:
File Dimensione Formato  
MD-inverse-iris.pdf

Open Access dal 12/02/2020

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 382.59 kB
Formato Adobe PDF
382.59 kB Adobe PDF Visualizza/Apri
aclv.pdf

accesso aperto

Tipo: Preprint
Licenza: Licenza per accesso libero gratuito
Dimensione 293.13 kB
Formato Adobe PDF
293.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/681811
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact