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e Reggio Emilia, Italy

January 9, 2019

Abstract

The finite volume correction for a mean-field monomer-dimer system
with an attractive interaction are computed for the pressure density, the
monomer density and the susceptibility. The results are obtained by intro-
ducing a two-dimensional integral representation for the partition function
decoupling both the hard-core interaction and the attractive one. The
next-to-leading terms for each of the mentioned quantities are explicitly
derived as well as the value of their sign that is related to their monotonic
convergence in the thermodynamic limit.

1 Introduction

Monomer-dimer systems are known to have no phase transitions when
the only interaction is the hard-core one. This fact has been rigorously
proved by Heilmann and Lieb [1, 2]. If instead an attractive interaction
is present, favouring configurations where similar particles sit in neigh-
bouring sites, a phase transition may be expected and has been studied
for some finite-dimensional cases [3–5] and in the mean-field setting [6,7],
later developed and applied in [8–12]. Monomer-dimer models are also re-
lated to the matching problem in computer science, where the statistical
mechanics approach has conveyed important results [13–15].

In the present paper we continue the investigation of the mean-field
case by controlling the finite-size corrections of the main thermodynamic
quantities describing the model, namely the pressure density, the monomer
density and the susceptibility. This is relevant in Statistical Mechanics and
its applications [16–18] because the size and the sign of the corrections
carry some important information on the phase transition within the phase
space.

More precisely, for instance for the pressure, we are interested in prov-
ing the existence of the limit and the relative properties for the next-to-
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leading term:
ΛN = logZN −Np∗ , (1)

where p∗ is the pressure density in the thermodynamic limit. The sign
of ΛN is related to the type of monotonic behaviour for large N , namely
whether the pressure reaches its limit from above or below: this is there-
fore important to understand whether the finite volume approximation is
by excess or defect (see [11] for its relevance in the inverse problem). We
notice that, while for the systems in finite-dimensional lattices the next to
leading terms identify surface contributions and further sub-leading pow-
ers of the linear size (see for instance for the ferromagnetic Ising model [19]
and spin-glass Edward-Anderson model [20]), in the mean-field case the
first correction is of order one. Moreover, in finite-dimensional lattices
the sign of the next to leading terms are related to local correlation in-
equalities (see [21–23] for the ferromagnets and [24] for the spin-glass
Edwards-Anderson), while sometimes in the mean field case there are
global positivity properties that leads to positivity [25]. In our case the
presence of two interactions of different nature, the repulsive hard-core
that forbids the overlap of two particles in the same site and the attrac-
tion that favours the closeness of similar articles, makes the identification
of the next to leading term particularly challenging. To this purpose we
introduce a new technical tool, a two-dimensional transform able to de-
couple, separately, the two interactions. Like in the case of the Laplace
transform in standard ferromagnets, this enable us to obtain explicit ex-
pression in terms of the solution of the model and evaluate the sign of
each correction.

2 Definitions and results

Consider the complete graph of size N . A monomer-dimer configura-
tion D on the set of vertices VN = {1, . . . , N} is a partition into pairs of a
subset A ⊂ VN : the pairs {i, j} ∈ D are called dimers, while the vertices
i ∈ VN rA are called monomers. We denote the monomer density by

mN (D) =
1

N
|VN rA| = N − 2 |D|

N
. (2)

Beyond the hard-core interaction (two dimers cannot overlap), we con-
sider also a mean-field attractive interaction and we define the following
Hamiltonian:

HN (D) = −N
(a

2
mN (D)2 + bmN (D)

)
, (3)

with parameters a > 0 and b ∈ R. Denoting by DN the configuration
space, the partition function of the system is

ZN =
∑

D∈DN

N−|D| e−HN (D) . (4)

We denote by 〈 · 〉N the expected value with respect to the associated
Gibbs measure, namely for any observable f : DN → R,

〈 f 〉N =
1

ZN

∑
D∈DN

f(D)N−|D| e−HN (D) (5)
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It is worth remarking that this model coincides with that studied in [6],
by the change of parameters

a = 2J , b = h− J . (6)

Theorem 1 (Finite-size corrections). Let a > 0, b ∈ R such that the
system has a unique phase (see [6] for the coexistence line). The pressure
density of a system of size N is

pN :=
1

N
logZN = p∗ +

Λ

N
+O

(
1

N2

)
, (7)

the average monomer density is

µN := 〈mN 〉N = m∗ +
Λ′

N
+O

(
1

N2

)
, (8)

and the susceptibility is

χN := N
(
〈m2

N 〉N − 〈mN 〉2N
)

= χ∗ +
Λ′′

N
+O

(
1

N2

)
. (9)

p∗, m∗, χ∗, Λ, Λ′, Λ′′ depend on the parameters a and b, but not on the
size N . Their expressions rely on the implicit expression for the limit-
ing monomer density m∗ = y∗ (see the self-consistent equation (27) or,
equivalently refer to [6]). In terms of F (x, y), D, L, KG,MG that will
be defined precisely in Section 4 (equations (25), (34), (39), (41), (43)
respectively), we have:

p∗ = F
(√

1−m∗ ,m∗
)

(10)

Λ = − log

√
D

a
(11)

Λ′ = Kg (12)

χ∗ = m∗ (1−m∗) +K(1)

(g−m∗)2
(13)

Λ′′ = Kg (1−g) −K(1)

(g−m∗)2
L+M(g−m∗)2 − (Kg)2 (14)

The computation of the finite size corrections relies on the following
integral representation, which decouples both the attractive interaction
and the hard-core interaction.

Proposition 1 (Integral representation). For any a > 0, b ∈ R, the
partition function admits the following integral representation:

ZN =
N
√
a

2π

∫∫
R2

Φ(x, y)N dxdy , (15)

where

Φ(x, y) =
(
x+ eay+b

)
exp

(
−x

2

2
− a y

2

2

)
. (16)

The previous integral representation is based on two properties of
Gaussian measures, that we recall in the next lemmas.
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Lemma 1 (Hubbard-Stratonovitch transform, or the Gaussian moments
generating function). For any σ > 0 and t ∈ R,

exp

(
t2σ2

2

)
=

1√
2πσ2

∫
R

exp

(
t y − y2

2σ2

)
dy. (17)

Lemma 2 (Wick-Isserlis rule for the Gaussian moments). For any σ > 0
and any finite set A,∑

D partition of A into pairs

σ2|D| =
1√

2πσ2

∫
R
x|A| exp

(
− x2

2σ2

)
dx. (18)

Proof of Proposition 1. First we use the Hubbard-Stratonovitch trans-
form to decouple the attractive interaction. Choosing t = NamN (D)
and σ2 = 1

Na
in (17), the partition function (4) rewrites as

ZN (a, b) =
∑

D∈DN

N−|D| expN
(a

2
mN (D)2 + bmN (D)

)
=

=
∑

D∈DN

N−|D|
√
Na

2π

∫
R

expN

(
(ay + b)mN (D)− ay2

2

)
dy =

=

√
Na

2π

∫
R
Z

(0)
N (ay + b) exp

(
−N ay2

2

)
dy,

(19)

where Z
(0)
N (b′) denotes the partition function ZN (a = 0, b = b′) of the

model without attractive interaction. Now we use the Wick-Isserlis rule
to decouple the hard-core interaction, as was shown in [26,27]. Choosing
σ2 = N−1 and A ⊆ VN in (18), the non-attractive partition function
rewrites as

Z
(0)
N (b′) =

∑
D∈DN

N−|D| exp
(
b′NmN (D)

)
=

=
∑
A⊆VN

eb
′(N−|A|)

√
N

2π

∫
R
x|A| exp

(
−N x2

2

)
dx =

=

√
N

2π

∫
R
(x+ eb

′
)N exp

(
−N x2

2

)
dx .

(20)

Substituting (20) with b′ = ay + b into (19), we finally obtain (15).

3 Monotonicity regions

The finite-size corrections for the pressure density pN , the average
monomer density µN and the susceptibility χN can be used to determine
the monotonicity of the three sequences with respect to the size of the
system N . To be precise, the signs of the corrections Λ, Λ′, Λ′′ in Theorem
1 determine whether pN , µN , χN reach their respective limits p∗, m∗, χ∗
from above or from below. Figure 1 shows the phase space regions where
Λ (green curve), Λ′ (red curve) and Λ′′ (blue curve) change sign.
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Figure 1: Phase space (a, b). The green curve represents the values (a, b) for which
the pressure density pN changes monotonicity with respect to N (i.e. Λ changes sign).
The red curve represents the values (a, b) for which the average monomer density
µN changes monotonicity with respect to N (i.e. Λ′ changes sign). The blue curve
represents the values (a, b) for which the susceptibility χN changes monotonicity with
respect to N (i.e. Λ′′ changes sign). The purple dot is the critical point of the system.
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Figure 2: Phase space (a, b): comparison between analytical and numerical mono-
tonicity (with respect to N) curves for the pressure density pN (upper panel), for
the average monomer density µN (middle panel) and for the susceptibility χN (lower
panel). The analytical curves (continuous lines) are the same as in Fig. 1.

Due to the mean field nature of the model, the Gibbs measure and the
expected value with respect to such measure at finite volume size N can be
computed by evaluating the combinatorial weights of the possible dimer
density values, that is the number of the possible configurations that share
the same value |D| of dimers on the complete graph with N vertices [11].
This enable us to compute numerically the phase space curves in which
pN , µN and χN invert the monotonicity with respect to N . The result
is achieved by analysing, in a suitably dense grid in the (a,b) plane, the
monotonicity in N of each observed quantity as done in [11] Fig. 1. The
comparison of these numerical curves with the ones obtained analitically
from Λ, Λ′ and Λ′′ (Fig. 1) is shown in Fig. 2. The perfect overlap
between the curves is evident.

Remark 1. It is possible to modify the Hamiltonian of the system in
such a way that the Gibbs measure does not change, but the new pressure
density p̃N reaches its limit p∗ from above as N →∞ in the whole phase
space (a, b). Namely

lim
N→∞

p̃N = inf
N
p̃N ∀a ≥ 0, b ∈ R . (21)

The finite size correction Λ = − log
√
D/a has range (− log

√
2,+∞),

indeed it is easy to compute explicitly the determinant (34)

D

a
= 2− y∗ − 2 a y∗(1− y∗), (22)
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which is non-negative by definition, takes value 0 at the critical point of
the system and goes to 2 as b→ −∞ and a is fixed. Therefore, it suffices
to set H̃N (D) = HN (D)− log

√
2 for all configurations D ∈ DN in order

to obtain

p̃N = pN +
log
√

2

N
= p∗ +

Λ̃

N
+O

(
1

N2

)
, (23)

where Λ̃ = Λ + log
√

2 > 0 , for all a ≥ 0, b ∈ R .
On the contrary, it is not possible to obtain a modified pressure density

reaching p∗ from below in the whole phase space, since the upper bound of
the finite size correction Λ is +∞.

4 Computation of the finite-size correc-
tions

The integral representation (15) allows to compute the finite-size cor-
rections by estimations of suitable Laplace two-dimensional integrals [28].
Laplace estimates are needed up to order N−1 in the case of the magneti-
sation and up to order N−2 in the case of the susceptibility.

We denote by (x∗, y∗) the global maximum of Φ on R2. First of all,
we observe that x∗, y∗ > 0, since

Φ(s1x, s2y) ≤ Φ(x, y) ∀x, y > 0 ∀s1, s2 = ±1 (24)

and the inequality is strict if s1, s2 are not both 1. It is convenient to set
for x, y > 0

F (x, y) := log Φ(x, y) = −x
2

2
− a y

2

2
+ log

(
x+ eay+b

)
. (25)

The condition ∇F (x∗, y∗) = 0 says that (x∗, y∗) is a solution of the fol-
lowing fixed point system: 

x =
1

x+ eay+b

y =
eay+b

x+ eay+b

(26)

which rewrites as: x =
√

1− y

eay+b =
y√

1− y
. (27)

The second equation in (27) is self-consistent and an elementary analysis
shows that it has a unique solution y∗ for a ≤ ac := (3 + 2

√
2)/2. For

a > ac there are at most 3 solutions, one in each of the following intervals
(0, y−), (y−, y+), (y+, 1), where y± :=

(
2a+ 1±

√
4a2 − 12a+ 1

)
/ (4a) ;

y∗ is the solution maximizing F (x∗, y∗) with x∗ =
√

1− y∗. y∗ will be
two-values only for parameters a, b on the coexistence line [6], a case that
we exclude from the present paper for the sake of simplicity.
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Now set also

g(x, y) :=
∂F

∂b
(x, y) =

eay+b

x+ eay+b
. (28)

The average monomer density, using the integral representation (15) for
the partition function, rewrites as

µN =
1

N

∂

∂b
logZN = g(x∗, y∗) +

∫∫
Φ(x, y)N (g(x, y)− g(x∗, y∗)) dx dy∫∫

Φ(x, y)N dxdy

.

(29)
The susceptibility rewrites as

χN =
1

N

∂2

∂b2
logZN =

= N

∫∫
Φ(x, y)N (g(x, y)− g(x∗, y∗))

2 dx dy∫∫
Φ(x, y)N dx dy

+

−N


∫∫

Φ(x, y)N (g(x, y)− g(x∗, y∗)) dx dy∫∫
Φ(x, y)N dxdy


2

+

+

∫∫
Φ(x, y)N g(x, y) (1− g(x, y)) dxdy∫∫

Φ(x, y)N dxdy

.

(30)

Both in (29) and (30), the term g(x∗, y∗) has been artificially introduced
in order to simplify the following computations. By the way, observe that
according to (26), g(x∗, y∗) = y∗ .

Expressions (29) and (30) can be typically approximated by the Laplace
method. These estimates involve Gaussian moments and higher order
derivatives of F and g at the maximum point (x∗, y∗) of F . Therefore, it
will be convenient to introduce the following notations:

Fi,j :=
∂i+jF

∂xi∂yj
(x∗, y∗) , (31)

while

φi,j :=
1

2π

∫∫
R2

xiyj exp

(
−1

2
(x, y)C(x, y)T

)
dxdy (32)

where

C := (−HessF (x∗, y∗))
−1 =

1

D

(
−F0,2 F1,1

F1,1 −F2,0

)
, (33)

D := det(−HessF (x∗, y∗)) = F0,2F2,0 − F 2
1,1 . (34)

Proposition 2 (Laplace estimates). Consider the integral

IN (G) :=

∫∫
R2

Φ(x, y)N G(x, y) dxdy , (35)
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where G is any real function, analytic in a neighbourhood of (x∗, y∗). Set

I ′N (G) := IN (G)
/( 2π

N
√
D
eNF (x∗,y∗)

)
. (36)

Provided that the global maximum point (x∗, y∗) is unique and the Hessian
matrix −C−1 is negative definite, the following estimates hold true:

a)
I ′N (G) = G(x∗, y∗) +O

(
N−1) (37)

b) If G(x, y) ≡ 1 for all (x, y) ∈ R2,

I ′N (G) = 1 + LN−1 +O
(
N−2) (38)

where
L = L(1) + L(2) ,

L(1) =
∑
i+j=4

Fi,j
i!j!

φi,j
D

L(2) =
∑

i1+j1=3,
i2+j2=3

Fi1,j1
i1!j1!

Fi2,j2
i2!j2!

φi1+i2,j1+j2
D2

(39)

c) If G(x∗, y∗) = 0,

I ′N (G) = KGN−1 +O
(
N−2) , (40)

where
KG = K(1)

G +K(2)
G ,

K(1)
G =

∑
i+j=2

Gi,j
i!j!

φi,j
D

K(2)
G =

∑
i1+j1=3,
i2+j2=1

Fi1,j1
i1!j1!

Gi2,j2
i2!j2!

φi1+i2,j1+j2
D2

(41)

d) If G(x∗, y∗) = 0 and ∇G(x∗, y∗) = 0,

I ′N (G) = K(1)
G N−1 +MGN

−2 +O
(
N−3) , (42)

where

MG =M(1)
G +M(2)

G +M(3)
G +M(4)

G ,

M(1)
G =

∑
i+j=4

Gi,j
i!j!

φi,j
D2

M(2)
G =

∑
i1+j1=3,
i2+j2=3

Fi1,j1
i1!j1!

Gi2,j2
i2!j2!

φi1+i2,j1+j2
D3

M(3)
G =

∑
i1+j1=4,
i2+j2=2

Fi1,j1
i1!j1!

Gi2,j2
i2!j2!

φi1+i2,j1+j2
D3

M(4)
G =

1

2

∑
i1+j1=3,
i2+j2=3,
i3+j3=2

Fi1,j1
i1!j1!

Fi2,j2
i2!j2!

Gi3,j3
i3!j3!

φi1+i2+i3,j1+j2+j3
D4

.

(43)
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Sketch of the Proof. Since Φ(x, y) takes its maximum on (0, 1)2, any con-
tribution to the integral IN coming from (x, y) ∈ R2 r (0, 1)2 is exponen-
tially small compared to the contribution given by (x, y) ∈ (0, 1)2 . We
write I ′N ≈ J ′N if there exists δ > 0 such that I ′N = J ′N + O(e−δN ) for
every N . Observe that

I ′N ≈
N
√
D

2π

∫ 1

0

∫ 1

0

expN(F (x, y)− F (x∗, y∗)) G(x, y) dxdy . (44)

Then make the change of variable (x, y) 7→ (x∗, y∗)+ 1√
N

(x, y) and expand

F around (x∗, y∗). Since ∇F (x∗, y∗) = 0, one obtains that

I ′N ≈
√
D

2π

∫∫
AN

exp

(
−1

2
(x, y)C−1(x, y)T

)
efN (x,y)GN (x, y) dx dy ,

(45)
where AN :=

(
− x∗

√
N, (1− x∗)

√
N
)
×
(
− y∗
√
N, (1− y∗)

√
N
)

and

fN (x, y) :=
∑
i+j≥3

Fi,j
i!j!

xiyj N−
i+j
2

+1 , (46)

GN (x, y) :=
∑
i+j≥0

Gi,j
i!j!

xiyj N−
i+j
2 . (47)

Let (X,Y ) be a centred Gaussian vector with covariance matrix C: (45)
rewrites as

I ′N ≈ E
[
efN (X,Y )GN (X,Y ) 1 ((X,Y ) ∈ AN )

]
. (48)

We remark that there exist K, δ > 0 such that P
(
(X,Y ) /∈ AN

)
≤ K e−δN

for all N . Therefore the orders 1, N−1, N−2, . . . of I ′N are obtained by
multiplying the suitable terms in the Taylor expansions of efN = 1+fN +
1
2
f2
N + . . . and GN and computing the corresponding Gaussian moments

of (X,Y ). It is worth noticing that the fractional orders N−
1
2 , N−

3
2 , . . .

are zero because the odd Gaussian moments are zero.

The integral representations of the pressure density (15), the average
monomer density (29) and the susceptibility (30) can be estimated accord-
ing to Proposition 2, yielding a proof of Theorem 1. In the Appendix we
compute explicitly the Gaussian moments and the derivatives that appear
in the expressions of the finite-size corrections.

Remark 2. An elementary computation shows that the susceptibility limit
χ∗ found in the present paper (13) coincides with that obtained in [11]
(equation 5) by direct differentiation of the consistency equation, namely

χ∗ =
2m∗(1−m∗)

2−m∗ − 2am∗(1−m∗)
. (49)
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Appendix

The even moments of (X,Y ), centered Gaussian vector of covariance
matrix (33), are computed up to order 8 using the Wick’s rule:

φ2,0 = −F0,2 , φ1,1 = F1,1 , φ0,2 = −F2,0 ,

φ4,0 = 3F 2
0,2 , φ3,1 = −3F0,2 F1,1 ,

φ2,2 = F0,2 F2,0 + 2F 2
1,1 ,

φ1,3 = −3F1,1 F2,0 , φ0,4 = 3F 2
2,0 ,

φ6,0 = −15F 3
0,2 , φ5,1 = 15F 2

0,2 F1,1 ,

φ4,2 = −3F 2
0,2 F2,0 − 12F0,2 F

2
1,1 ,

φ3,3 = 9F0,2 F1,1 F2,0 + 6F 3
1,1 ,

φ2,4 = −3F0,2 F
2
2,0 − 12F 2

1,1 F2,0 ,

φ1,5 = 15F1,1 F
2
2,0 , φ0,6 = −15F 3

2,0 ,

φ8,0 = 105F 4
0,2 , φ7,1 = −105F 3

0,2 F1,1 ,

φ6,2 = 90F 2
0,2 F

2
1,1 + 15F 3

0,2 F2,0 ,

φ5,3 = −45F 2
0,2 F1,1 F2,0 − 60F2,0 F

3
1,1 ,

φ4,4 = 9F 2
0,2 F

2
2,0 + 24F 4

1,1 + 72F0,2 F
2
1,1 F2,0 ,

φ3,5 = −45F0,2 F1,1 F
2
2,0 − 60F0,2 F

3
1,1 ,

φ2,6 = 90F 2
1,1 F

2
2,0 + 15F0,2 F

3
2,0 ,

φ1,7 = −105F 3
2,0 F1,1 , φ0,8 = 105F 4

2,0 .

(50)

The derivatives of F at its maximum point (x∗, y∗) up to order 4, in terms
of y∗ only are:

F2,0 = −2 + y∗ , F1,1 = −a y∗
√

1− y∗ ,

F0,2 = −a+ a2 y∗(1− y∗) ,

F3,0 = 2(1− y∗)3/2 , F2,1 = 2a y∗(1− y∗) ,

F1,2 = −a2 y∗
√

1− y∗ (1− 2y∗) , F0,3 = a3 y∗(1− y∗)(1− 2y∗) ,

F4,0 = −6 (1− y∗)2 , F3,1 = −6a y∗(1− y∗)3/2 ,

F2,2 = 2a2 y∗(1− y∗)(1− 3y∗) ,

F1,3 = −a3 y∗
√

1− y∗ (1− 6y∗ + 6y2∗) ,

F0,4 = a4 y∗(1− y∗)(1− 6y∗ + 6y2∗) .

(51)

The derivatives of g at (x∗, y∗) up to order 3:

g1,0 = −y∗
√

1− y∗ , g0,1 = a y∗(1− y∗) , g2,0 = 2 y∗(1− y∗) ,

g1,1 = −a y∗
√

1− y∗ (1− 2y∗) , g0,2 = a2 y∗(1− y∗)(1− 2y∗) ,

g3,0 = −6 y∗(1− y∗)3/2 , g2,1 = 2a y∗(1− y∗)(1− 3y∗) ,

g1,2 = −a2 y∗
√

1− y∗ (1− 6y∗ + 6y2∗) ,

g0,3 = a3 y∗(1− y∗)(1− 6y∗ + 6y2∗) .

(52)
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The derivatives of g̃ := (g − y∗)2 at (x∗, y∗) up to order 4:

g̃2,0 = 2 g21,0 , g̃1,1 = 2 g1,0 g0,1 , g̃0,2 = 2 g20,1 ,

g̃3,0 = 6 g1,0 g2,0 , g̃2,1 = 4 g1,0 g1,1 + 2 g0,1 g2,0 ,

g̃1,2 = 4 g0,1 g1,1 + 2 g1,0 g0,2 , g̃0,3 = 6 g0,1 g0,2 ,

g̃4,0 = 6 g22,0 + 8 g1,0 g3,0 ,

g̃3,1 = 6 g2,0 g1,1 + 6 g1,0 g2,1 + 2 g0,1 g3,0 ,

g̃2,2 = 4 g21,1 + 2 g2,0 g0,2 + 4 g1,0 g1,2 + 4 g0,1 g2,1 ,

g̃1,3 = 6 g1,1 g0,2 + 6 g0,1 g1,2 + 2 g1,0 g0,3 ,

g̃0,4 = 6 g20,2 + 8 g0,1 g0,3 ,

(53)

The derivatives of ĝ := g(1− g) at (x∗, y∗) up to order 2:

ĝ1,0 = (1− 2y∗) g1,0 , ĝ0,1 = (1− 2y∗) g0,1 ,

ĝ2,0 = −2 g21,0 + (1− 2y∗) g2,0 ,

ĝ1,1 = −2 g1,0 g0,1 + (1− 2y∗) g1,1 ,

ĝ0,2 = −2 g20,1 + (1− 2y∗) g0,2 .

(54)
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[15] L. Zdeborová, M. Mézard, “The number of matchings in random
graphs”, Journal of Statistical Mechanics 5, P05003 (2006)

[16] E. Agliari, A. Barra, P. Contucci, A. Pizzoferrato, C. Vernia, “Social
interaction effects on immigrant integration”, Palgrave Communica-
tions 4:55 (2018)

[17] E. Agliari, A. Barra, L. Dello Schiavo, A. Moro, “Complete integra-
bility of information processing by biochemical reactions”, Scientific
Reports 6:36314 (2016)

[18] A. Barra, P. Contucci, R. Sandell, C. Vernia, “An analysis of a large
dataset on immigrant integration in Spain. The Statistical Mechanics
perspective on Social Action”, Scientific Reports 4, 4174 (2014)

[19] M.E. Fisher, G. Caginalp, “Wall and boundary free energies”, Com-
munications in Mathematical Physics 56(1), 11-56 (1977)

[20] P. Contucci, S. Graffi, “On the Surface-Pressure for the Edwards-
Anderson Model”, Communications in Mathematical Physics 248,
207-216 (2004)

[21] R. B. Griffiths, “Correlation in Ising ferromagnets”, Journal of Math-
ematical Physics 8, 478-483 (1967)

[22] R. B. Griffiths, “A proof that the free energy of a spin system is
extensive”, Journal of Mathematical Physics 5, 1215-1222 (1964)

[23] D.G. Kelly, S. Sherman, “General Griffiths’ inequalities on correla-
tions in Ising ferromagnets”, Journal of Mathematical Physics 9, 466
(1968)

[24] P. Contucci, J. Lebowitz, “Correlation Inequalities for Spin Glasses”,
Annales Henri Poincaré 8, 1461-1467 (2007)
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