In the present study, high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy was applied to live Pseudomonas aeruginosa (PA) bacterial cells to determine the metabolome of this opportunistic Gram-negative human pathogen, and in particular, its response to the volatile aromatic low molecular weight signaling molecule, 2-aminoacetophenone (2-AA). Multi-dimensional HRMAS NMR is a promising method which may be used to determine the in vivo metabolome of live intact bacterial cells; 2-AA is produced by PA and triggers the emergence of phenotypes that promote chronic infection phenotypes in in vitro and in vivo (animal) models. In the present study, we applied one-dimensional and two-dimensional proton (1H) HRMAS NMR to PA cells which were grown with or without 2-AA in order to examine the associations between metabolites and cellular processes in response to 2-AA. We also compared whole-genome transcriptome profiles of PA cells grown with or without 2-AA and found that 2-AA promoted profound metabolic changes in the PA cells. By comparing the whole-genome transcriptome profiles and metabolomic analysis, we demonstrated that 2-AA profoundly reprogramed the gene expression and metabolic profiles of the cells. Our in vivo 1H HRMAS NMR spectroscopy may prove to be a helpful tool in the validation of gene functions, the study of pathogenic mechanisms, the classification of microbial strains into functional/clinical groups and the testing of anti-bacterial agents.

Effects of a small, volatile bacterial molecule on Pseudomonas aeruginosa bacteria using whole cell high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and genomics

Righi, Valeria;
2018

Abstract

In the present study, high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy was applied to live Pseudomonas aeruginosa (PA) bacterial cells to determine the metabolome of this opportunistic Gram-negative human pathogen, and in particular, its response to the volatile aromatic low molecular weight signaling molecule, 2-aminoacetophenone (2-AA). Multi-dimensional HRMAS NMR is a promising method which may be used to determine the in vivo metabolome of live intact bacterial cells; 2-AA is produced by PA and triggers the emergence of phenotypes that promote chronic infection phenotypes in in vitro and in vivo (animal) models. In the present study, we applied one-dimensional and two-dimensional proton (1H) HRMAS NMR to PA cells which were grown with or without 2-AA in order to examine the associations between metabolites and cellular processes in response to 2-AA. We also compared whole-genome transcriptome profiles of PA cells grown with or without 2-AA and found that 2-AA promoted profound metabolic changes in the PA cells. By comparing the whole-genome transcriptome profiles and metabolomic analysis, we demonstrated that 2-AA profoundly reprogramed the gene expression and metabolic profiles of the cells. Our in vivo 1H HRMAS NMR spectroscopy may prove to be a helpful tool in the validation of gene functions, the study of pathogenic mechanisms, the classification of microbial strains into functional/clinical groups and the testing of anti-bacterial agents.
2018
Righi, Valeria; Constantinou, Caterina; Kesarwani, Meenu; Rahme, Laurence G.; Aria Tzika, A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/675961
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact