Green fluorescent protein (GFP) is a widely utilized molecular reporter of gene expression. However, its use in in vivo imaging has been restricted to transparent tissue mainly due to the tissue penetrance limitation of optical imaging. Magnetization transfer contrast (MTC) is a magnetic resonance imaging (MRI) methodology currently utilized to detect macromolecule changes such as decrease in myelin and increase in collagen content. MTC MRI imaging was performed to detect GFP in both in vitro cells and in an in vivo mouse model to determine if MTC imaging could be used to detect infection from Pseudomonas aeruginosa in murine tissues. It was demonstrated that the approach produces values that are protein specific and concentration dependent. This method provides a valuable, non-invasive imaging tool to study the impact of novel antibacterial therapeutics on bacterial proliferation and perhaps viability within the host system, and could potentially suggest the modulation of bacterial gene expression within the host when exposed to such compounds.
Righi, V., Starkey, M., Dai, G., Rahme, L.G., Tzika, A.A. (2019). Magnetization transfer contrast MRI in GFP-tagged live bacteria. MOLECULAR MEDICINE REPORTS, 19(1), 617-621 [10.3892/mmr.2018.9669].
Magnetization transfer contrast MRI in GFP-tagged live bacteria
Righi, Valeria;
2019
Abstract
Green fluorescent protein (GFP) is a widely utilized molecular reporter of gene expression. However, its use in in vivo imaging has been restricted to transparent tissue mainly due to the tissue penetrance limitation of optical imaging. Magnetization transfer contrast (MTC) is a magnetic resonance imaging (MRI) methodology currently utilized to detect macromolecule changes such as decrease in myelin and increase in collagen content. MTC MRI imaging was performed to detect GFP in both in vitro cells and in an in vivo mouse model to determine if MTC imaging could be used to detect infection from Pseudomonas aeruginosa in murine tissues. It was demonstrated that the approach produces values that are protein specific and concentration dependent. This method provides a valuable, non-invasive imaging tool to study the impact of novel antibacterial therapeutics on bacterial proliferation and perhaps viability within the host system, and could potentially suggest the modulation of bacterial gene expression within the host when exposed to such compounds.File | Dimensione | Formato | |
---|---|---|---|
Righi et al. - 2019 - Magnetization transfer contrast MRI in GFP-tagged .pdf
Open Access dal 01/08/2019
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.