Background and Purpose- Small-vessel damage in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is associated with impaired vascular constriction and dilation. We used a functional magnetic resonance imaging task with an event-related design of stimulus to explore the anticipated abnormally decreased blood oxygen level dependent effect in CADASIL. Methods- Twenty-one CADASIL patients and 16 healthy controls performed a Go/No-go task exploring reactive and proactive phases of inhibition control in a 3-T magnet. Results- Error number and reaction times were not different between patients and controls. Analysis of the reactive inhibition (No-go/baseline contrast) did not show clusters of lower or higher blood oxygen level dependent effect in patients or controls. Analysis of the proactive inhibition (alertness contrast) in CADASIL patients revealed a lower blood oxygen level dependent effect in the alerting network (anterior cingulate cortex and insula, thalamus), lower brain stem and left cerebellar hemisphere (crus I) that is involved in executive functions. Conclusions- In CADASIL patients, an event-related Go/No-go task reveals a lower blood oxygen level dependent effect in the alerting network and areas involved in executive functions possibly reflecting the altered hemodynamic response secondary to small-vessel changes. Our observation extends the role of MR in demonstrating one of the fundamental pathophysiological changes of CADASIL.
Gavazzi, G., Orsolini, S., Salvadori, E., Bianchi, A., Rossi, A., Donnini, I., et al. (2019). Functional Magnetic Resonance Imaging of Inhibitory Control Reveals Decreased Blood Oxygen Level Dependent Effect in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. STROKE, 50(1), 69-75 [10.1161/STROKEAHA.118.022923].
Functional Magnetic Resonance Imaging of Inhibitory Control Reveals Decreased Blood Oxygen Level Dependent Effect in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy
Orsolini, Stefano;Diciotti, Stefano;
2019
Abstract
Background and Purpose- Small-vessel damage in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is associated with impaired vascular constriction and dilation. We used a functional magnetic resonance imaging task with an event-related design of stimulus to explore the anticipated abnormally decreased blood oxygen level dependent effect in CADASIL. Methods- Twenty-one CADASIL patients and 16 healthy controls performed a Go/No-go task exploring reactive and proactive phases of inhibition control in a 3-T magnet. Results- Error number and reaction times were not different between patients and controls. Analysis of the reactive inhibition (No-go/baseline contrast) did not show clusters of lower or higher blood oxygen level dependent effect in patients or controls. Analysis of the proactive inhibition (alertness contrast) in CADASIL patients revealed a lower blood oxygen level dependent effect in the alerting network (anterior cingulate cortex and insula, thalamus), lower brain stem and left cerebellar hemisphere (crus I) that is involved in executive functions. Conclusions- In CADASIL patients, an event-related Go/No-go task reveals a lower blood oxygen level dependent effect in the alerting network and areas involved in executive functions possibly reflecting the altered hemodynamic response secondary to small-vessel changes. Our observation extends the role of MR in demonstrating one of the fundamental pathophysiological changes of CADASIL.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.