Simple finite-dimensional Kantor triple systems over the complex numbers are classified in terms of Satake diagrams. We prove that every simple and linearly compact Kantor triple system has finite dimension and give an explicit presentation of all the classical and exceptional systems.
Cantarini, N., Ricciardo, A., Santi, A. (2018). Classification of simple linearly compact Kantor triple systems over the complex numbers. JOURNAL OF ALGEBRA, 514, 468-535 [10.1016/j.jalgebra.2018.08.009].
Classification of simple linearly compact Kantor triple systems over the complex numbers
Cantarini, Nicoletta
;RICCIARDO, ANTONIO
;Santi, Andrea
2018
Abstract
Simple finite-dimensional Kantor triple systems over the complex numbers are classified in terms of Satake diagrams. We prove that every simple and linearly compact Kantor triple system has finite dimension and give an explicit presentation of all the classical and exceptional systems.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
classKTSJArxiv.pdf
accesso aperto
Tipo:
Preprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Condividi allo stesso modo (CCBYSA)
Dimensione
563.04 kB
Formato
Adobe PDF
|
563.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.