Simple finite-dimensional Kantor triple systems over the complex numbers are classified in terms of Satake diagrams. We prove that every simple and linearly compact Kantor triple system has finite dimension and give an explicit presentation of all the classical and exceptional systems.

Cantarini, N., Ricciardo, A., Santi, A. (2018). Classification of simple linearly compact Kantor triple systems over the complex numbers. JOURNAL OF ALGEBRA, 514, 468-535 [10.1016/j.jalgebra.2018.08.009].

Classification of simple linearly compact Kantor triple systems over the complex numbers

Cantarini, Nicoletta
;
RICCIARDO, ANTONIO
;
Santi, Andrea
2018

Abstract

Simple finite-dimensional Kantor triple systems over the complex numbers are classified in terms of Satake diagrams. We prove that every simple and linearly compact Kantor triple system has finite dimension and give an explicit presentation of all the classical and exceptional systems.
2018
Cantarini, N., Ricciardo, A., Santi, A. (2018). Classification of simple linearly compact Kantor triple systems over the complex numbers. JOURNAL OF ALGEBRA, 514, 468-535 [10.1016/j.jalgebra.2018.08.009].
Cantarini, Nicoletta; Ricciardo, Antonio; Santi, Andrea
File in questo prodotto:
File Dimensione Formato  
classKTSJArxiv.pdf

accesso aperto

Tipo: Preprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Condividi allo stesso modo (CCBYSA)
Dimensione 563.04 kB
Formato Adobe PDF
563.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/665694
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact