Context. The continuously enhanced sensitivity of radioastronomical observations allows the detection of increasingly complex organic molecules. These systems often exist in a large number of isomers leading to very congested spectra. Aims. We explore the conformational space of 1,2-butanediol and provide sets of spectroscopic parameters to facilitate searches for this molecule at millimeter wavelengths. Methods. We recorded the rotational spectrum of 1,2-butanediol in the 59.6-103.6 GHz frequency region (5.03-2.89 mm) using a free-jet millimeter-wave absorption spectrometer, and we analyzed the properties of 24 isomers with quantum chemical calculations. Selected measured transition lines were then searched on publicly available ALMA Band 3 data on IRAS 16293-2422 B. Results. We assigned the spectra of six conformers, namely aG′Ag, gG′Aa, g′G′Ag, aG′G′g, aG′Gg, and g′GAa, to yield the rotational constants and centrifugal distortion constants up to the fourth or sixth order. The most intense signal belong to the aG′Ag species, that is the global minimum. Search for the corresponding 30x,3029x,29 transition lines toward IRAS 16293-2422 B was unsuccessful. Conclusions. Our present data will be helpful for identifying 1,2-butanediol at millimeter wavelengths with radio telescope arrays. Among all possible conformers, first searches should be focused on the aG′Ag conformers in the 400-800 GHz frequency spectral range.

Vigorito, A., Calabrese, C., Melandri, S., Caracciolo, A., Mariotti, S., Giannetti, A., et al. (2018). Millimeter-wave spectroscopy and modeling of 1,2-butanediol : Laboratory spectrum in the 59.6-103.6 GHz region and comparison with the ALMA archived observations. ASTRONOMY & ASTROPHYSICS, 619, A140-1-A140-9 [10.1051/0004-6361/201833489].

Millimeter-wave spectroscopy and modeling of 1,2-butanediol : Laboratory spectrum in the 59.6-103.6 GHz region and comparison with the ALMA archived observations

Vigorito, A.;Calabrese, C.;Melandri, S.;Giannetti, A.;Maris, A.
2018

Abstract

Context. The continuously enhanced sensitivity of radioastronomical observations allows the detection of increasingly complex organic molecules. These systems often exist in a large number of isomers leading to very congested spectra. Aims. We explore the conformational space of 1,2-butanediol and provide sets of spectroscopic parameters to facilitate searches for this molecule at millimeter wavelengths. Methods. We recorded the rotational spectrum of 1,2-butanediol in the 59.6-103.6 GHz frequency region (5.03-2.89 mm) using a free-jet millimeter-wave absorption spectrometer, and we analyzed the properties of 24 isomers with quantum chemical calculations. Selected measured transition lines were then searched on publicly available ALMA Band 3 data on IRAS 16293-2422 B. Results. We assigned the spectra of six conformers, namely aG′Ag, gG′Aa, g′G′Ag, aG′G′g, aG′Gg, and g′GAa, to yield the rotational constants and centrifugal distortion constants up to the fourth or sixth order. The most intense signal belong to the aG′Ag species, that is the global minimum. Search for the corresponding 30x,3029x,29 transition lines toward IRAS 16293-2422 B was unsuccessful. Conclusions. Our present data will be helpful for identifying 1,2-butanediol at millimeter wavelengths with radio telescope arrays. Among all possible conformers, first searches should be focused on the aG′Ag conformers in the 400-800 GHz frequency spectral range.
2018
Vigorito, A., Calabrese, C., Melandri, S., Caracciolo, A., Mariotti, S., Giannetti, A., et al. (2018). Millimeter-wave spectroscopy and modeling of 1,2-butanediol : Laboratory spectrum in the 59.6-103.6 GHz region and comparison with the ALMA archived observations. ASTRONOMY & ASTROPHYSICS, 619, A140-1-A140-9 [10.1051/0004-6361/201833489].
Vigorito, A.; Calabrese, C.; Melandri, S.; Caracciolo, A.; Mariotti, S.; Giannetti, A.; Massardi, M.; Maris, A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/661441
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact