A dimer of quercetin prepared through a Mannich reaction protects pyridinium bisretinoid A2E from photooxidation at 430 nm in aqueous medium at pH 7.4. In the presence of light and O2, A2E is quickly attacked by 1O2 produced in situ (by excited A2E) to give nonaoxirane and other oxygenated compounds which can be involved in diseases of the macula. Peroxyl radicals might have only a marginal role on the photooxidation of A2E. The dimer is actually a potent quencher of 1O2 with a rate constant kQ of 8.5 × 108 M−1 s−1 in methanol at room temperature. On the other hand, its antioxidant abilities against ROO· radicals are quite limited since kROO· = 7.3 × 105 M−1 s−1 (in buffer solution at pH 7.4), the value being essentially identical to that of quercetin. The quenching of 1O2 by the dimer is therefore the main reason for the A2E protection and prevention of age-related macular degeneration.

Foti, M.C., Amorati, R., Baschieri, A., Rocco, C. (2018). Singlet oxygen quenching- and chain-breaking antioxidant-properties of a quercetin dimer able to prevent age-related macular degeneration. BIOPHYSICAL CHEMISTRY, 243, 17-23 [10.1016/j.bpc.2018.10.001].

Singlet oxygen quenching- and chain-breaking antioxidant-properties of a quercetin dimer able to prevent age-related macular degeneration

Amorati, Riccardo;Baschieri, Andrea;
2018

Abstract

A dimer of quercetin prepared through a Mannich reaction protects pyridinium bisretinoid A2E from photooxidation at 430 nm in aqueous medium at pH 7.4. In the presence of light and O2, A2E is quickly attacked by 1O2 produced in situ (by excited A2E) to give nonaoxirane and other oxygenated compounds which can be involved in diseases of the macula. Peroxyl radicals might have only a marginal role on the photooxidation of A2E. The dimer is actually a potent quencher of 1O2 with a rate constant kQ of 8.5 × 108 M−1 s−1 in methanol at room temperature. On the other hand, its antioxidant abilities against ROO· radicals are quite limited since kROO· = 7.3 × 105 M−1 s−1 (in buffer solution at pH 7.4), the value being essentially identical to that of quercetin. The quenching of 1O2 by the dimer is therefore the main reason for the A2E protection and prevention of age-related macular degeneration.
2018
Foti, M.C., Amorati, R., Baschieri, A., Rocco, C. (2018). Singlet oxygen quenching- and chain-breaking antioxidant-properties of a quercetin dimer able to prevent age-related macular degeneration. BIOPHYSICAL CHEMISTRY, 243, 17-23 [10.1016/j.bpc.2018.10.001].
Foti, Mario C.*; Amorati, Riccardo; Baschieri, Andrea; Rocco, Concetta
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/659416
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact