Water resources are essential for the economic development and sustenance of human activities belonging to the civil, agricultural and industrial sectors. Increasing water stress conditions, mainly due to climate change and population growth, imply the need to improve the resilience of water supply systems and account for sustainability of water withdrawals. Metabolic modelling approaches represent a flexible tool able to provide a support to decision making in the medium-long term, based on sustainability criteria. Here, these concepts are adopted to analyse part of the water supply network in the Province of Reggio-Emilia (Italy). Different water withdrawals scenarios are considered to account for a potential decrease in water resources availability from a quantitative perspective. As a second step, these scenarios are compared by means of a set of key performance metrics able to identify the most sustainable long-term strategy for a dynamic management of the water supply system. Results of these analysis allow to increase the resilience of the network under future scenarios, while protecting the water resources.

Metabolic Modelling: A Strategic Planning Tool for Water Supply Systems Management

Giada Felisa
;
Ilaria Lauriola;Valentina Ciriello;Vittorio Di Federico
2018

Abstract

Water resources are essential for the economic development and sustenance of human activities belonging to the civil, agricultural and industrial sectors. Increasing water stress conditions, mainly due to climate change and population growth, imply the need to improve the resilience of water supply systems and account for sustainability of water withdrawals. Metabolic modelling approaches represent a flexible tool able to provide a support to decision making in the medium-long term, based on sustainability criteria. Here, these concepts are adopted to analyse part of the water supply network in the Province of Reggio-Emilia (Italy). Different water withdrawals scenarios are considered to account for a potential decrease in water resources availability from a quantitative perspective. As a second step, these scenarios are compared by means of a set of key performance metrics able to identify the most sustainable long-term strategy for a dynamic management of the water supply system. Results of these analysis allow to increase the resilience of the network under future scenarios, while protecting the water resources.
2018
Giada Felisa; Ilaria Lauriola; Valentina Ciriello; Vittorio Di Federico
File in questo prodotto:
File Dimensione Formato  
proceedings-02-00585-v2_Felisa.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 964.61 kB
Formato Adobe PDF
964.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/656857
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact