The detection of filaments in the cosmic web will be crucial to distinguish between the possible magnetogenesis scenarios, and future large polarization surveys will be able to shed light on their magnetization level. In this work, we use numerical simulations of galaxy clusters to investigate their possible detection. We compute the Faraday Rotation signal in intracluster filaments and compare it to its surrounding environment. We find that the expected big improvement in sensitivity with the SKA-MID will in principle allow the detection of a large fraction of filaments surrounding galaxy clusters. However, the contamination of the intrinsic Faraday Rotation of background polarized sources will represent a big limiter to the number of objects that can be significantly detected. We discuss possible strategies to minimize this effect and increase the chances of detection of the cosmic web with the large statistics expected from future surveys.
Locatelli, N., Vazza, F., Domínguez-Fernández, P. (2018). The challenge of detecting intracluster filaments with Faraday rotation. GALAXIES, 6(4), 128-143 [10.3390/galaxies6040128].
The challenge of detecting intracluster filaments with Faraday rotation
Locatelli, Nicola
;Vazza, FrancoData Curation
;Domínguez-Fernández, Paola
2018
Abstract
The detection of filaments in the cosmic web will be crucial to distinguish between the possible magnetogenesis scenarios, and future large polarization surveys will be able to shed light on their magnetization level. In this work, we use numerical simulations of galaxy clusters to investigate their possible detection. We compute the Faraday Rotation signal in intracluster filaments and compare it to its surrounding environment. We find that the expected big improvement in sensitivity with the SKA-MID will in principle allow the detection of a large fraction of filaments surrounding galaxy clusters. However, the contamination of the intrinsic Faraday Rotation of background polarized sources will represent a big limiter to the number of objects that can be significantly detected. We discuss possible strategies to minimize this effect and increase the chances of detection of the cosmic web with the large statistics expected from future surveys.File | Dimensione | Formato | |
---|---|---|---|
655829.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.11 MB
Formato
Adobe PDF
|
3.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.