Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log10ρ2, where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb?1 of √ s = 13 TeV protonproton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

Aaboud M., A.G. (2018). Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector. PHYSICAL REVIEW LETTERS, 121(9), 092001-1-092001-21 [10.1103/PhysRevLett.121.092001].

Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector

Alberghi G. L.;Bellagamba L.;Bindi M.;Boscherini D.;Caforio D.;De Castro S.;Di Sipio R.;Fabbri L.;Franchini M.;Gabrielli A.;Giacobbe B.;Lasagni Manghi F.;Macchiolo A.;Massa L.;Mengarelli A.;Monzani S.;Polini A.;Rinaldi L.;Romano M.;Sbarra C.;Sbrizzi A.;Semprini-Cesari N.;Sioli M.;Todome K.;Ucchielli G.;Valentinetti S.;Villa M.;Vittori C.;Vivarelli I.;Zoccoli A.;
2018

Abstract

Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log10ρ2, where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb?1 of √ s = 13 TeV protonproton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.
2018
Aaboud M., A.G. (2018). Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector. PHYSICAL REVIEW LETTERS, 121(9), 092001-1-092001-21 [10.1103/PhysRevLett.121.092001].
Aaboud M., Aad G., Abbott B., Abdinov O., Abeloos B., Abidi S.H., AbouZeid O.S., Abraham N.L., Abramowicz H., Abreu H., Abreu R., Abulaiti Y., Acharya...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/649867
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 972
social impact