Spatial data collected worldwide from a huge number of locations is frequently used in environmental and climate studies. Spatial modelling for this type of data presents both methodological and computational challenges. In this work we illustrate a computationally efficient non-parametric framework in order to model and estimate the spatial field while accounting for geodesic distances between locations. The spatial field is modelled via penalized splines (P-splines) using intrinsic Gaussian Markov Random Field (GMRF) priors for the spline coefficients. The key idea is to use the sphere as a surrogate for the Globe, then build the basis of B-spline functions on a geodesic grid system. The basis matrix is sparse as is the precision matrix of the GMRF prior, thus computational efficiency is gained by construction. We illustrate the approach with a real climate study, where the goal is to identify the Intertropical Convergence Zone using high-resolution remote sensing data.
Greco F, V.M. (2018). P-spline smoothing for spatial data collected worldwide. SPATIAL STATISTICS, 27, 1-17 [10.1016/j.spasta.2018.08.008].
P-spline smoothing for spatial data collected worldwide
Greco F;Ventrucci M
;
2018
Abstract
Spatial data collected worldwide from a huge number of locations is frequently used in environmental and climate studies. Spatial modelling for this type of data presents both methodological and computational challenges. In this work we illustrate a computationally efficient non-parametric framework in order to model and estimate the spatial field while accounting for geodesic distances between locations. The spatial field is modelled via penalized splines (P-splines) using intrinsic Gaussian Markov Random Field (GMRF) priors for the spline coefficients. The key idea is to use the sphere as a surrogate for the Globe, then build the basis of B-spline functions on a geodesic grid system. The basis matrix is sparse as is the precision matrix of the GMRF prior, thus computational efficiency is gained by construction. We illustrate the approach with a real climate study, where the goal is to identify the Intertropical Convergence Zone using high-resolution remote sensing data.File | Dimensione | Formato | |
---|---|---|---|
GrecoF_SpatStat_2018_postprint.pdf
Open Access dal 06/09/2020
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
8.3 MB
Formato
Adobe PDF
|
8.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.