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P-spline smoothing for spatial data collected worldwide
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Abstract

Spatial data collected worldwide from a huge number of locations is frequently used in
environmental and climate studies. Spatial modelling for this type of data presents both
methodological and computational challenges. In this work we illustrate a computa-
tionally efficient non-parametric framework in order to model and estimate the spatial
field while accounting for geodesic distances between locations. The spatial field is
modelled via penalized splines (P-splines) using intrinsic Gaussian Markov Random
Field (GMREF) priors for the spline coefficients. The key idea is to use the sphere as a
surrogate for the Globe, then build the basis of B-spline functions on a geodesic grid
system. The basis matrix is sparse as is the precision matrix of the GMREF prior, thus
computational efficiency is gained by construction. We illustrate the approach with a
real climate study, where the goal is to identify the Intertropical Convergence Zone

using high-resolution remote sensing data.

Keywords: smoothing, intrinsic Gaussian Markov Random field, P-spline, geodesic,
ITCZ

1. Introduction

High-resolution spatial data collected worldwide, usually by means of remote sens-
ing techniques, is wide-spread in environmental and climate studies: most of the sta-
tistical methods developed in modelling this kind of data use the sphere as a surrogate
for the Globe. Modelling data collected at a global scale presents both methodological
and computational challenges. The traditional toolkit for a spatial data modeller when
dealing with geostatistical datasets and aiming to make predictions at unmonitored lo-
cations would suggest to apply kriging techniques (see, e.g., [Banerjee et al.| (2014)).

These rely on the assumption of a smooth Gaussian Random Field (GRF), continuous
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in space but only observed at a discrete set of points, any finite realization of it be-
ing generated by a multivariate Gaussian distribution. The covariance structure of this
distribution is specified via a spatial covariance function. The practice is largely domi-
nated by spatial covariances defined on Euclidean distances, such as the Matérn family,
thus a preliminary step in the analysis is the projection of the 3d Cartesian coordinates
(from the Earth’s surface) over a 2d coordinate space. The standard choice is to work
with geographic coordinates (latitude-longitude), but other mapping methods can be
used. [Banerjee (2005) provides a review of such mapping techniques and discusses the
impact of the chosen metric on spatial prediction via kriging. The traditional toolkit
outlined above presents two main difficulties when modelling high-resolution data ob-
served over a spherical domain.

The first issue is that the process of spatial prediction needs to be coherent with
the geometry of the sphere. Using a planar metric over a 2d projection is inappro-
priate because it generates spurious anisotropy and non-stationarity of the covariance
function (Banerjee| (2005)). The geodesic (aka great circle) distance, i.e. the length
of the shortest path between two points over the surface of a sphere, is a natural can-
didate for measuring distances over a spherical domain. However, using great circle
distances in a Matérn family does not necessarily guarantee a positive definite covari-
ance (Gneiting} 2013). Banerjee| (2005) used a simulation to study the behaviour of
different metrics regarding estimation of the Matérn covariance parameters on a region
as large as Colorado, finding a substantial impact of the chosen metric on the range of
the correlation function. This means that with data collected on larger regions on Earth
(e.g. the whole Globe), a biased estimation of the underlying field is to be expected to
some extent, when covariance functions built on Euclidean distances are used. A large
number of papers have tackled this issue by essentially proposing new models for data
on a spherical domain, both in a parametric and non-parametric framework.

In the parametric setting, several papers focused on building valid stochastic pro-
cesses for the sphere, see, e.g., Jun and Stein| (2007); Jeong and Jun| (2015)); [Heaton
et al.| (2014); [Porcu et al.|(2016) and references therein. The stochastic partial differen-
tial equation (SPDE) approach by [Lindgren et al.| (2011) has gained a lot of attention
recently. This approach builds a GRF with Matérn covariance as the finite element
solution of a particular SPDE, an idea that can be generalized for different types of
manifolds including the sphere.

In the non-parametric setting,|[Wahba! (1981)) was first to introduce smoothing splines
onto the sphere, while analysing weather data collected from a large number of stations
around the world. Outside the spline realm,|Di Marzio et al.[(2014) presented local lin-

ear regression for spherical data, including the case of smoothing of a scalar response
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on a spherical predictor. Wood|(2017) discusses in detail the connection between spline
smoothing and thin plate splines for a sphere, pointing out that low rank smoothers are
also applicable to spherical data. Although low rank smoothers allows for a reduction
in the number of parameters to estimate, the main role in alleviating the computational
burden is played by the sparsity of the smoothing matrix, obtained by using local ba-
sis functions, i.e. non-null over a limited domain. B-splines are local functions built
upon joint polynomials connected at knots, which are applied in different contexts,
such as in penalized spline (P-spline) regression (Eilers and Marx, (1996). With spa-
tial data, bivariate B-splines over triangulations (Lai and Schumaker, 2007)) provide
a basis for piecewise polynomial surfaces and are used in spatial models (Lai et al.|
2009; |Baramidze et al., [2006). Finite Elements provide an alternative basis for piece-
wise polynomial surfaces over triangulations (Sangalli et al.l 2013)). Also, more recent
proposals deal with data distributed on two-dimensional general domains using finite
elements (Duchamp and Stuetzle,, 2003; |[Ettinger et al.,[2016) or non-rational B-splines
basis (Wilhelm et al., 2016).

The second difficulty concerning the application of kriging techniques to high-
resolution global datasets is purely computational. Continuous covariance functions
used in geostatistics involve a dense covariance structure for the underlying GRF. When
the number of data locations 7 is large, this modelling framework becomes impractical
because of the need to invert large dense matrices, with a computational cost increasing
by cubic growth with n. Statistics literature on the big n problem has boomed in the last
decade, mostly due to the increasing availability of high resolution remote sensing data
for environmental studies. Some of the models for large data that can be implemented
in a fully Bayesian hierarchical setting (for a review see Banerjee| (2017))) are based
on a low-rank representation of the field (Wikle and Cressie, |1999; Banerjee et al.|
2008). Other proposals look to find a sparse representation of the covariance, like in
tapering (Furrer et al.,[2006), or of the precision matrix (Rue and Held, 2005)). In this
framework, the paper by [Lindgren et al.| (2011)) derives an approximated solution to
the SPDE in terms of a Gaussian Markov Random Field (GMRF), instead of a GRF,
in order to gain computational efficiency. A recent approach that allows to deal with
GRFs in a computationally efficient manner is Datta et al.| (2016)), where sparsity is
introduced without the need for dimension reduction. The fully Bayesian framework
presented in this paper follows both directions, in the sense that it is built on a low-
rank representation using local B-splines and exploits the sparsity induced by a GMRF
prior.

We propose a computationally efficient non-parametric approach to estimate the

spatial field underlying data on the sphere that properly accounts for geodesic dis-
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tances between locations. Our method is based on a low-rank P-spline smoother to
gain flexibility w.r.t. parametric models. The main contribution of this work is the
extension of the P-spline model for smoothing data collected over a spherical domain.
The model is built on a set of bivariate B-splines computed on a Geodesic Discrete
Global Grid (GDGG) system (Sahr et al. 2003), yielding a quasi-regular triangular
mesh over the Globe. Geodesic grids have been used in spatial statistics to create flex-
ible multi-resolution models implemented in a likelihood-based inferential framework
(Cressie and Johannesson, [2008; Nychka et al., [2015). In contrast to the latter works,
in this paper we follow a fully Bayesian approach and fit the model using an efficient
Gibbs sampler, exploiting sparsity of the basis matrix and of the precision of the GMRF
prior. We illustrate the method on a real climate study, where the goal is to identify the
Intertropical Convergence Zone (ITCZ) from high-resolution remote sensing data col-
lected worldwide over sea, with missing data occurring over land.

The rest of the paper is organized as follows. Section 2] describes the dataset and
application goals. Section [3| presents our proposal for smoothing data over the sphere
that we dub Geodesic P-splines. Section [] illustrates the method used on a climate-
related case study, focusing on the detection of the ITCZ. A discussion is provided in
Section

2. Motivating example

Our interest in geodesic P-splines is motivated by a climate-related case study
aimed at investigating the location of the ITCZ using satellite data. The ITCZ is a
region of the atmosphere broadly located within the tropical belt where the north-east
and south-east trade winds converge, an area characterised by high cloudiness and se-
vere convective precipitation (Holton and Hakim| |2013). An important aspect regards
seasonal variability in the ITCZ position: the ITCZ is located roughly North of the
equator in the boreal Spring and Summer, while it migrates to southern regions in Au-
tumn and Winter. The location of the ITCZ affects duration and intensity of the wet
and dry seasons at the tropics and plays a key role in the general circulation of the
atmosphere: assessing its variability is crucial for improving global climate models.
Moreover, understanding the long-term trend characterizing this phenomenon is cru-
cial for monitoring changes in climate patterns on a global scale.

The phenomenon regulating the ITCZ behaviour cannot be measured directly, hence
several studies have investigated it using some suitable proxy variables, like maximum
precipitation (Zhang, 2001), wind field (Zagar et al.,2011), vorticity and reflectivity of
the clouds (Waliser and Gautier| [1993)). As a general feature, all these studies benefit
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from the increasing availability of satellite measurements. In this paper we focus on
data from the infrared channels of the Along Track Scanning Radiometer (ATSR) series
of instruments, which were in orbit from 1991 to 2012 for the accurate retrieval of sea

surface temperature. Recently, in the frame of the European Space Agency ATSR Long

Term Stability project (https://earth.esa.int/web/sppa/activities/multi-sensors-timeseries/alts/about)),

Casadio et al.|(2016) developed the Advanced Infra-Red Water Vapour Estimator al-
gorithm (AIRWAVE) for the retrieval of the Total Column of Water Vapour (TCWYV)
from the ATSR measurements. In this work we use TCWYV as a proxy variable for
locating ITCZ.

Data on TCWYV regarding year 2008 was provided by the National Research Coun-
cil - Institute of Atmospheric Sciences and Climate (CNR-ISAC), Italy. Data comes
as monthly averages of TCWYV in a raster of dimension 360 columns (longitude val-
ues) by 180 rows (latitude values), thus each cell covers one degree over latitude and
longitude. In Figure |1} the data for January and July is displayed. The AIRWAVE
algorithm provides reliable data over the sea and in clear sky conditions, thus TCWV
observations over land are missing (roughly a third of the total number of cells), except
in areas covered by lakes. The percentage of raster cells with missing observations is
about 40%.

The application goal is to estimate the ITCZ position and its uncertainty. We con-
sider the TCWYV data on the fine raster grid as point-level data observed at the centroid
of each cell. We are actually managing raster data as point data. This is a standard pro-
cedure when modelling high resolution raster data, particularly when adopting splines
that need to be evaluated at fixed points. The same rationale has been adopted in |Eilers
et al.[(2006)); Lee and Durban| (2009); Ugarte et al.[|(2012)). We focus on modelling the
latent field of TCWV separately for each month, deferring spatio-temporal modelling
to future work. The statistical challenges we tackle in this paper are related to efficient
smoothing of large data to remove measurement error and to allow for rapid predic-
tions at unmonitored locations. We believe that the extension of Bayesian P-Splines
to a spherical domain can be a valuable strategy because of its efficiency and compu-
tational stability. Bayesian inference provides immediate tools for ITCZ location, by
analysing the joint posterior distribution of the latent field. One issue concerning ITCZ
detection is that there is no definition in terms of a fixed threshold. This situation calls
for methods to search for peaks in the latent field, bearing in mind that the ITCZ is
expected to be located at the Equator.

In Sectionfd] the ITCZ detection problem is addressed by searching for the latitudes
where the TCWYV latent field shows the highest values. We provide a graphical output,
by plotting the posterior probability that a point on the Earth belongs to the ITCZ.
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Figure 1: TCWYV data for January and July (unit measure, Kg/m?). In general, TCWV measurements are
available only over sea, as the data cannot be accurately retrieved over land; however, note that observations
are still present in correspondence of wide lakes, e.g. the Great Lakes of North America and the Victoria
lake.

3. Geodesic P-splines

3.1. Background on P-splines for spatial data

In the one-dimensional setting, P-splines (Eilers and Marx,|1996) are usually adopted
to model the smooth effect of a covariate on the response as a linear combination of
B-splines scaled by spline coefficients. Key features of this method are (a) equally-
spaced univariate B-splines of a certain degree d, these being non zero over a limited
interval of the covariate domain, and (b) a penalty on the */* order differences between
adjacent spline coefficients to control smoothness. The popularity of P-splines is due
to numerical stability and flexibility in the modelling choices; e.g., the penalty order
and the degree of the B-splines can be decided according to the application at hand.
Higher-dimensional smoothers, suitable for modelling spatial data, can be constructed
as tensor product P-splines (Eilers et al.,|2006). In a frequentist framework, estimation
is obtained via penalized maximum likelihood or iterative re-weighted least squares,
with the smoothing parameter selected via cross validation or optimized over some
information criterion. This method has become increasingly popular and is currently
implemented in R packages such as mgcv (Wood, 2017)).

In order to build the ground for our proposal we next revise spatial P-splines for data
observed on a two-dimensional latitude-longitude plane following [Eilers et al.| (2006)).
Let us assume y; is a Gaussian observation at location (lat;, lon;), i = 1, ..., n, the model
is

yi = ulati,lon) +& 5 &~ N©O,7."),

where u(lat;, lon;) is a two-dimensional function, with no parametric assumptions on it
and 7, is the noise precision. We can think of u(lat;, lon;) as a smooth surface repre-

senting the latent field which is modelled as a linear combination of bivariate B-spline
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basis functions: o L
ullati,lom) = ) > bilat)by(lon)Byy,
g=1 I=1

where b;(lat;)b,(lon;) is the tensor product of marginal B-splines, evaluated at (lat;, lon;),
and S, is the associated spline coefficient. The marginal B-splines b;,/ = 1,...,L
(bg,q = 1,...,0), are defined on a set of knots that are chosen to be equally-spaced
over the latitude (longitude) domain. Taking the tensor product of the marginal bases
comes to K = QL bivariate B-splines built on a regular grid over the plane; see Figure
left panel. In this sense, P-splines give a low-rank representation of the latent field,
as K is typically chosen to be much lower than n. In matrix notation, g = Bf, where B
is a basis matrix of dimension n X K and f the vector of spline coefficients. When data
is organized in a regular grid with no missing values, the basis matrix can be computed
by the Kronecker product B = By, ® By,,. When data are irregularly scattered over
the plane, efficient row-wise Kronecker operations can still be used to compute B, as
this is equivalent to having data organized on a fine regular grid with missing values.
We suggest the reader see [Eilers et al.| (2006) for details on P-splines for spatial data
and to [Lee| (2010) for insights into the mixed model formulation of P-splines within a
spatio-temporal setting.

P-splines have been framed in a fully hierarchical Bayesian context by [Lang and
Brezger| (2004). The hierarchical model can be cast starting from the following likeli-
hood:

yle,B, e ~ N(ﬂ,T;'I) ; u=al+ BB

The penalty is reproduced by an r” order random walk (RW) prior on the spline coef-

ficients, that in general can be expressed as
-
R(Blr) = ()R (R 2 exp -2 BTRB), (M

where 75 is a scalar precision hyper-parameter and R is the structure matrix of dimen-
sion K X K. The non-zero entries in R impose conditional dependencies among the
spline coefficients, thus encoding the type of penalty. Formally, the RW is a particular
type of Intrinsic Gaussian Markov Random Field (IGMRF). The smoothing properties
of an IGMREF are determined by the pattern of non-zero entries of R and by its rank
deficiency. Any vector in the null space of R can be added to 8 and density (1)) remains
unchanged. For this reason, IGMRF priors are appropriate to model local deviations

around an overall mean or, in general, a polynomial trend, with 75 controlling the size
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of such deviations. For spatial smoothing, we will focus on a prior that leaves the
overall mean unspecified, therefore rank(R) = K — 1.
The precision matrix for P-spline smoothing over a plane proposed in [Eilers et al.

(20006) is constructed as the Kronecker sum
R=(IL®Ry) + (Riyy ® 1) 2

where R, and R, are the (marginal) structure matrices of a RW on latitudinal and
longitudinal knots, respectively. If we take R, and R),, as the structure of a 1% order
RW, this is equivalent to assuming an intrinsic Conditional Autoregressive (ICAR)
model (Besag} [1974), with structure

ko i=j
Rij=4-1 i~j 3)

0 otherwise,

where k; is the number of knots adjacent to the i’ knot; e.g. k; = {2, 3,4} according to
whether i is a knot on the vertex, the border, or the interior of the regular grid. Usually
an ICAR prior is assumed on a set of n random effects, one for each data location,
but here the ICAR is on the spline coefficients. In this sense, the basis B allows the
stochastic field on the K spline coefficients to be expanded at a much larger number
of locations like n. This strategy allows for a substantial reduction in the number of
parameters to estimate. Choosing higher order random walks in each dimension is
possible: this will yield an higher-order IGMREF prior, having a structure matrix with
larger rank-deficiency; e.g. taking a 2@ order RW on latitude and longitude comes to
an IGMRF that models deviations from a plane. For a discussion of the properties of
IGMREFs and their applications see |Rue and Held| (2005)).

3.2. P-splines on Geodesic Discrete Global Grid Systems

The assumption of equally-spaced knots is convenient for building Bayesian penal-
ized spline models, because it allows to create a suitable smoothing prior by simply
using an IGMRF model for regularly spaced locations on the spline coefficients. Fol-
lowing this idea, knot placement must take into account the geometry of the data’s
support. Thus, building an equally spaced basis on the latitude-longitude plane is not
a sensible choice when the data covers the whole Globe or a large region thereof. Fig-
ure [2] highlights that equally spaced B-splines in terms of Euclidean distances over

the latitude-longitude plane (left panel) are not equally-spaced over the sphere (right
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Figure 2: Cubic B-splines equally-spaced in terms of Euclidean distances over the latitude and longitude
plane (left panel; computed as the tensor product of marginal B-spline basis, see Section @ The right
panel displays how these bases appear on the sphere.

panel). The spacing between the knots and the shape of the basis varies substan-
tially latitude-wise: in such a knot-grid, imposing an IGMRF with structure (3 and
a single precision parameter 7g on the spline coeflicients would generate the spurious
anisotropy discussed in (2005). Of course, this would be a naive approach to
spatial smoothing over the sphere, since it does not introduce conditional dependence
between knots located at extreme longitudes, which are actually close on the sphere
surface. A circular penalty imposing conditional correlations among these knots seems
a more sensible choice, however the irregular knot distribution over the sphere would
still generate spurious non-stationarity, as this paper will discuss at a later moment. In
what follows we propose an approach for (a) building geodesic knot-grids which are
almost equally spaced in terms of geodesic distances, (b) building basis functions and

penalty matrices on such grids.

3.2.1. Building the geodesic grid
Although building exactly equally spaced grids over the sphere surface is an impos-
sible task, GDGGs offer a close approximation to equal spacing and their architecture

provides immediate solutions to build basis functions and penalty matrices. Details on

the spatial configuration of GDGGs can be found in [Randall et al.| (2002). [Sahr et al.

(2003) outline five design choices that need to be undertaken for GDGGs construction:
our choices are listed below.

1. Choice of a base regular polyhedron: we choose the icosahedron, which is a
polyhedron made of 20 equilateral triangles and 12 nodes and consider this as a
rough representation of a unit sphere. An icosahedron is displayed in Figure 3]
left panel.



243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

Figure 3: On the left panel, the icosahedron. On the central panel, the icomesh, i.e. the regular triangular
mesh after the split operation is repeated four times (v = 4). On the right panel, the icosphere, i.e. the mesh
obtained from normalizing the icomesh nodes of the central panel.

2. Choice of a fixed orientation for the base regular polyhedron relative to the Earth:
we set one node of the icosahedron at coordinates (0, 0, 1), assuming this to be
the North Pole.

3. Choice of a hierarchical spatial partitioning method defined symmetrically on
each face of the base regular polyhedron. At this step, we split each triangle of
the icosahedron in four equal triangles. By repeating this operation an arbitrary
number of times we obtain a refined mesh, which we denote as icomesh. In
Figure 3] central panel, the reader can see the icomesh resulting from four split
iterations.

4. Transforming the base polyhedron partition into the corresponding spherical sur-
face. This is achieved by simply normalizing the icomesh nodes, so that they lay
on the sphere; we denote this mesh as icosphere, see Figure [3] right panel. The
icosphere is a refined icosahedron, hence a much better representation of the
sphere.

5. Choice of a method to assign points to grid cells. The ability to assign points
to the grid cells composing the tessellation can be useful for several purposes.
In our case, it is fundamental for determining which triangle each data location
falls into when it comes to the computation of the basis functions, as discussed

in the following section.

Following the above five steps, we obtain a geodesic grid of knots which are almost
equidistant in terms of great-circle distances. To summarize, the GDGG is constructed
by splitting each icosahedron face into four triangles, in a recursive way. Note that,
while the icosphere is a sphere tessellated into spherical triangles, the icomesh is a

regular mesh made by equilateral triangles.

10



267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

3.2.2. Building the basis and the penalty matrix

The number of split iterations determines the dimension of the basis, i.e. the num-
ber of columns of the basis matrix B. Let n be the number of observations and v be
the number of split iterations, the basis has dimension 7 x K, with K = 5- 22D 4+ 2
(Randall et al.l 2002). For v = 0 we have K = 12, which is the number of vertices
of the icosahedron, by increasing v we obtain an icomesh with higher resolution. We
adopt B-spline basis functions centred at the knots, each basis spanning six triangles
(thus assuming the six closest nodes as neighbours) except for those centred at the 12
icosahedron vertices (that have five neighbours).

The next step consists of evaluating the K B-splines, of a certain degree d, at an
arbitrary data point on the sphere. Once that the triangle containing such a point is
determined, B-splines can be evaluated using Bernstein polynomials (Lai and Schu-
maker, 2007). To this aim, we find it convenient to work on the icomesh instead of
the icosphere, as it is simpler to deal with planar than with spherical triangles. There-
fore, we first project the 3d data location from the icosphere onto the icomesh do-
main, obtaining a point, v, which falls inside a planar triangle (that lies on one of the
icosahedron faces) and, second, we evaluate the K B-splines at this 2d point. Fol-
lowing |Lai and Schumaker| (2007), any point v = (x,y) inside a triangle of vertices

vi = (x1,y1),v2 = (x2,¥2),v3 = (x3,y3) has a unique representation as

Vv = V1b1 + V2b2 + V3b3,
where (b1, by, b3) are called barycentric coordinates and are such that by + b, + b3 = 1.
The Bernstein polynomial of degree d is

d! ;
d _ k

with , j, k integer numbers summing to d. The following property

D> HY =1
t+j+k=d
guarantees that for each location on the sphere the basis functions add up to 1. This is
a desirable property for any smoothing model, giving a flat spatial field when there is
no variation around the overall level, i.e. all spline coefficients are equal.
Let z; = (zi1,22) denote the location for observation i projected on the icomesh,
B[i, ] the row entry of B with the B-splines evaluated at z; and {ki, k», k3} the indices

for the three knots closest to z; (note that these are the vertices of the triangle containing
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Table 1: Non-zero elements of B[i, ], for B-splines of degree d = {1, 2, 3}.

observation 7). It is important to note that only the B-splines centred at {ki, k», k3} are
non-zero at z;, whereas the B-splines centred at the remaining knots in the icomesh
are zero at z;. The three non-zero elements of B[i, {ki, k>, k3}] can be expressed as
Bernstein polynomials (@), i.e. polynomials in the barycentric coordinates. Table [I]
reports the non zero elements of B[i, ] for linear (d = 1), quadratic (d = 2) and cubic
(d = 3) B-splines.

The resulting basis matrix B is sparse because the B-splines are non-zero over a
domain spanning over only six triangles on the icomesh. Figure [4] left panel, shows
how the new basis functions appear when projected over latitude and longitude. This
plot suggests that a fairly similar degree of smoothness is applied everywhere using this
new basis, avoiding the kind of spurious anisotropy introduced by the basis in Figure

as [2] The Geodesic P-splines setting is completed by specifying the matrix R, that we
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choose as the ICAR structure (3) with rank-deficiency 1. The number of neighbouring
knots is k; = 5, if i is one of the 12 nodes of the icosahedron, and k; = 6, if i is one of

the remaining K — 12 nodes.

3.2.3. Model properties

When using IGMREF priors with precision matrix 7gR on the spline coefficients S,
the structure of conditional dependence imposed by R determines the structure of the
marginal variances of each coefficient, Var(§;) = ‘rl;lR;,i = 1,...,K, R™ being the
generalised inverse of R. Different structures can lead to extremely different marginal
variances. To overcome this problem, Sgrbye and Rue (2014) suggest scaling the pre-
cision matrix so that the hyperprior for 75 can be selected to give the same degree of
smoothness, a priori, starting from different structure matrices. The scaled precision
matrix can be obtained as R* = kR, where « is the geometric mean of the diagonal en-
tries of R™. IGMRFs with scaled precision matrices, although being characterised by a
different correlation structure, have a common feature: the average marginal variance
is equal to one.

Figure[5|compares the marginal variances for three models corresponding to a naive
penalty (top-left), longitude-wise circular penalty (bottom) and a geodesic penalty (top-
right). For the sake of comparison, the precision matrices associated with the three
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Figure 4: Cubic B-splines equally-spaced in terms of geodesic distances over the sphere (right panel; com-
puted using Bernstein polynomials on a GDGG, see Section . The left panel displays how these bases
appear on the latitude longitude plane.

models were scaled. For naive penalty, we mean an IGMREF prior for the spline co-
efficients laying on a planar grid, using the ICAR structure (3). The longitude-wise
circular penalty is an IGMRF on a planar grid with structure (Z)), but assuming Ry, as
the structure of a circular 1*' order RW. For geodesic penalty, we mean an IGMRF on
a GDGG using the ICAR structure as described in Section[3.2.2] In the left panel, the
non-stationarity in the marginal variances implied by using the ICAR structure on a
regular planar grid (naive penalty) is evident. In the bottom panel, marginal variances
obtained by building a circular penalty longitude-wise show a variation latitude-wise
as expected. The IGMREF prior on the geodesic grid with the ICAR structure implies
stability in the marginal variances that is not achieved with the other specifications. As
a matter of fact, the geodesic grid is almost a torus since all knots, except the icosahe-
dron nodes, have six neighbours; we believe this is a desirable feature of our model as
it mimics the idea of second-order stationarity typical of Matérn correlation functions.

3.2.4. Hyperpriors

To complete the fully Bayesian model we need to set priors for the hyper-parameters
75 and 7. The precision 7z regulates the amount of smoothing. When 75 goes to in-
finity, p is a constant (because the rank deficiency of R is 1), while 75 € (0, +00) gives
a more flexible surface. A standard approach is to use a Gamma, Ga(a, b), with shape
a and rate b, for both random walk and noise precisions. Usual parametrizations are a
equal to 1 and b small (e.g. Ga(1, 5¢—5)), or a and b small (e.g. Gamma(le—3, le—3)),
as an attempt of non informativeness on the variance scale. Several papers in the lit-
erature have discussed issues related to the Gamma conjugate priors in hierarchical

additive models and proposed alternatives (Gelman|, [2006; [Simpson et all 2017). Typ-
ically, the main impact regards the prior for the random walk precision, whereas the
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prior for the noise precision is negligible. In general, choice about the prior 7(7) will
be relevant in situations where we have a poor sample size compared to the number
of parameters which require to be estimated. In the case study under examination the
large sample size available for estimating each spline coefficient makes the impact of
m(7g) negligible.

3.2.5. Computations

Model estimation does not raise particular issues with respect to planar P-spline
models, once matrices B and R have been built. Indeed, the model belongs to the class
of Latent Gaussian Markov Models and approximate Bayesian inference can be per-
formed efficiently using the R-INLA package (Rue et al.,[2009)). In our case study, we
find it more appropriate to use a Gibbs sampling algorithm as the tools developed for
detecting the ITCZ (see section {f.3) require a sample from the joint posterior distribu-
tion of the model. The most expensive step is to sample from the full conditional for

the spline coefficients

Blts, 7oy ~NQ'BTy.0) Q= (BTB ' ?R) 5)
under the linear constraint I}B,B = 0 needed for intercept identifiability. We use an ef-
ficient Gibbs sampler coded in R with the use of sparse matrix algebra as implemented
in the spam package (Furrer and Sain| [2010) to exploit sparsity of @ in (5). The spam
package contains routines to perform an efficient Cholesky decomposition of Q, which
is important for fast sampling from a GMRF under linear constraints like the full condi-
tional n(B|ts, 7¢, y) in . The full conditionals for all the parameters in the model and
the code for implementing the Gibbs sampler in R can be found in the supplementary

material.

4. Application

4.1. Modelling TCWYV data
The goal of our application is to detect the ITCZ location by using the TCWV

dataset described in Section [2] The operative definition of ITCZ that we use, as sug-
gested by researchers from ISAC-CNR, Italy, is “the strip surrounding the Earth surface
where TCWYV shows highest values”.

To this aim, we first apply Geodesic P-splines for smoothing observed TCWV data,

which is affected by noise and does not provide measurements over the land, in order

15



368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

to predict the latent field all over the world. Then, we exploit the model output for lo-
cating ITCZ by sampling from the joint posterior distribution of the latent field. A set of
m = 1000 data randomly scattered over the Earth’s surface is held out from model es-
timation for validation purposes (see section . We denote with y = (yy,...,y,)" the
vector of TCWYV observations used for model estimation and with y* = (37,..., vl
the vector of validation data. We fitted the Geodesic P-spline model to the data dis-
played in Figure|l} referred to January and July, 2008.

The hierarchical model is

Likelihood:
Yfore ~ Nt'D
p = al+BB ©)
Prior:
a ~ N, T;l)
Bltg ~  N(O, TlglR*) B is subject to 1}Bﬁ =0 @)
Hyper-prior:
75 ~ Ga(l,5¢-5)
7. ~ Ga(l,5¢-5)

At the likelihood level, the matrix B in @ is the B-spline basis on a GDGG as
described in Section [3.2] The latent field u is a surface varying smoothly over the
sphere, with a the global spatial mean and S the spline coefficients. At the prior level,
we have a diffuse Gaussian prior, with 7, fixed at a small value for the intercept and an
ICAR prior, with precision 7zR", for the spline coeflicients. Using the scaled matrix
R is a fundamental step: this allows us to select the same prior for 75 and 7, as both 1
in (6) and R* in (7) have average marginal variance equal to 1. The results presented in
this section are obtained using a Ga(1, Se —5) for both hyperparameters, after checking
that the results were non sensitive to other choices for a and b.

To compute B, the latitude and longitude coordinates are converted into spherical
coordinates, then projected on the icomesh and finally cubic B-splines are evaluated on
a GDGG with K knots, where K depends on v, the number of split iterations perfor-
maed on the icosahedron: the choice of v is a critical aspect of the method and will be
discussed in section@ where we compare results obtained with v = 1,...,6.

Model estimation is performed by Gibbs sampling: we draw a total of 5000 samples

after convergence (achieved after a quick burnin due to the large sample size available
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for each model parameter). Regarding computational time, it takes about ten seconds
(in a laptop with Intel core i7, 2.5GHz, 16 GB ram) to run a hundred iterations when
v=>5.

In a Bayesian framework, spatial prediction is naturally based on the joint posterior
predictive distribution of the latent field: sampling from this distribution is particularly
efficient when using Bayesian P-splines. Once the posterior distribution of the latent
field m(u|y) has been obtained, prediction f at an arbitrary location ¥ can be performed,
after evaluating the basis functions at ¥, using the posterior predictive distribution:

n(@ly) = f ({1|)m(6ly)do ®)

where 6 = (@, B,7,,73, 7). This is achieved by composite sampling once G sam-
ples from the posterior distribution are available. Samples from distribution are
obtained by sampling from 7({1|6%), where 6% is an MCMC sample from the posterior
distribution of 6.

4.2. Model checking

In this section the goal is twofold: firstly, we investigate the predictive perfor-
mance of the proposed Geodesic P-spline (G-Pspline) model for different choices of
v. Secondly, we compare the G-Pspline and the stochastic partial differential equa-
tion (SPDE) approach by [Lindgren et al. (2011}, both in terms of computational and
predictive perfomance, using the TCWYV data.

The predictive performance is evaluated by first estimating the model on training
dataset and then computing error measures on a validation dataset. Let 5); = E(yj ly)
denote the mean of the posterior predictive distribution at the validation location j, j =
1,...,m, as measures of predictive performances we consider both the relative mean
absolute prediction error (RMAPE),

5 -y,
i

1 m
RMAPE = — s 9
m; ©)

J

where the average is taken over the validation locations, and the relative mean square
prediction error (RMSPE), which is the same as () except for averaging squares, in-

stead of absolute, relative errors.

4.2.1. G-Pspline model performance for varying v
The first three lines of Table 2]report the RMAPE and the RMSPE for the G-Pspline

model for different number of knots, K (note that the different K’s are associated to
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v = 1,...,6). The RMSPE shows a minimum at v = 5 (0.109) while the RMAPE is
almost unchanged when increasing v from 5 to 6 as it decays from 12.8% (v = 5) to
12.2% (v = 6). Based on these results we find appropriate to select v = 5 for ITCZ
location, as this allows us to gain computational speed in the procedure described in

section

G-Pspline K 42 162 642 2562 10242 40962
RMAPE | 0.263 0.213 0.169 0.146 0.128 0.122
RMSPE | 0.218 0.206 0.166 0.136 0.109 0.122
SPDE K 43 164 644 2580 10243 40841
RMAPE | 0.518 0.204 0.166 0.148 0.128 0.118
RMSPE | 1.619 0.186 0.163 0.151 0.106 0.110

Table 2: Relative mean absolute prediction error (RMAPE) and relative mean square prediction error (RM-
SPE) obtained with Geodesic P-Splines (G-Pspline) and SPDE. K denotes the number of knots of the
geodesic grid for G-Pspline (for v = 1,..., 6), or the number of knots of the triangular mesh for SPDE
(obtained by tuning the max . edge argument in the R-INLA function inla.mesh.2d).

The choice of v is the starting step of the modelling process, similarly to the choice
of a suitable triangulation in the SPDE approach. Literature on P-splines recomm-
mends using a number of knots K large enough to describe the spatial variation of the
data and let the penalty determine the right amount of smoothing. Under different K
levels, provided that K is large enough, the same degree of smoothing is obtained by
rescaling the smoothing parameter accordingly. This is confirmed in Table [2, where
measures of predictive performance of the G-Pspline model remain almost unchanged
for K = 10242 (v = 5) and K = 40962 (v = 6). In a Bayesian P-spline setting, this
rescaling is reflected in the posterior distribution of 7g; if K changes, the location of
m(7gly) shifts accordingly.

4.2.2. Comparing G-Pspline and SPDE

SPDE is implemented in the R-INLA package (Martins et al., 2013) and, as a start-
ing point, needs the definition of a triangular mesh covering the study region, analo-
gously to the definition of a geodesic grid in our framework. For the sake of comparison
of the prediction performance the SPDE mesh and the G-Psline geodesic grid should
have similar size. For each column in Table@] (i.e., for each v from 1 to 6) the triangu-
lar mesh is built using the R—~INLA function inla.mesh.2d, by tuning the max.edge
argument (the largest allowed triangle edge length) in order to have roughly the same
number of knots K.

Looking at Table [2] column-wise, G-Pspline and SPDE perform similarly in terms
of RMAPE and RMSPE. The boxplots in Figure [] show the variability of the (log)
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Figure 6: Boxplots of the (log) relative absolute prediction errors (APE), log(ly; - y; /yj.l), measured on a
validation set of m = 1000 locations. Prediction performance for the G-Pspline and the SPDE models is very
similar for each v.

relative absolute prediction errors over the m validation locations, for both models and
varying v. For each v, the variability of the relative absolute prediction errors is prac-
tically the same for G-Pspline and SPDE. Boxplots for the squared prediction errors
present a similar pattern and are not shown here. Based on these results we can con-
clude that, in our case study, prediction performance measured on a validation set of
m = 1000 locations is overall very similar for G-Pspline and SPDE.

As a final note on computation time, the SPDE model fitted within R-INLA is faster
than the G-Pspline fitted via Gibbs sampling: SPDE takes around four minutes, while
our Gibbs sampler takes around ten minutes to run 5000 iterations. Nonetheless, the
procedure described in Section {.3] for ITCZ location requires MCMC samples from
the model posterior. Sampling from the posterior of the latent field within R—INLA
(using inla.posterior.sample()) is computationally intensive for our model, as it
takes around 30 seconds to run 10 samples. Therefore, to the purpose of ITCZ location,
the proposed Geodesic P-spline approach using Gibbs sampling is overall faster than
SPDE within R-INLA, while maintaning the same predictive performance. Results on
the ITCZ location obtained with SPDE for January and July (not shown here) were very
similar to those presented in Figure[8|which are obtained using the procedure discussed

next.
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Figure 7: Model prediction of the latent field for January and July.

4.3. Locating the ITCZ

In Figure [/| we illustrate the maps of the TCWV posterior means obtained with
v = 5: this accomplishes our first task, i.e. to remove random noise from data and to
reconstruct the latent field on the whole of Earth’s surface.

The problem of ITCZ location is addressed by summarising the posterior predic-
tive distribution of the TCWYV latent field. The procedure outlined below requires the
specification of a reasonable guess concerning the width of the ITCZ region denoted
as W; we based our choice on expert knowledge by ISAC-CNR researchers and set
W = 1000 km. The ITCZ width relative to the length of a Meridian (which is about
20000 km) is around w = W/20,000 = 0, 05.

Our algorithm to locate the ITCZ consists of a discrete search performed longitude-
wise (i.e. at each meridian). Let m = 1,..., M indicate a set of M meridians: for a
given m, we sample from the posterior predictive distribution of the latent field at a fine
grid over latitude. Then, we compute the posterior probability that a point at a given
latitude belongs to the region where the TCW'V shows the highest values (i.e. the point
falls into the ITCZ region), integrating out uncertainty about model parameters.

Let ft,, = (@ims - -« » flims - - - » fALm) be the vector of the latent field predicted at loca-
tions [ = 1,..., L, where (laty, ..., laty,, ..., lat,) is a regular sequence from 90° to

—90°. The algorithm proceeds as follows. Form = 1,..., M:

e evaluate the bases at locations [ = 1,..., L, this gives a meridian-specific L X K

dimensional basis matrix B,,;

e sample G realizations from the posterior predictive distribution (§) by computing
iy = af1+Bupg=1,....G;

e for g = 1,...,G, rank the vector ji5,. This gives a posterior sample of the
ranks, indicated by vector ¢5, = (¢ ..., ..., 8] ), eg ¢ = Lifl =

argmax,(fi;,), while ¢f = 1if [ = argmin,(fi;,).
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Figure 8: ITCZ location for January and July.

The probability that a point / belonging to meridian m falls into the ITCZ is computed
as

G g
1 Im
Pr(laty, € ITCZly) = ; 1 (1 - < w] (10)

where 1 is the indicator function and gbfm /L is the normalised rank. To sum up the
above, (I0) is the probability that the point with geographical coordinates (lat;, long,,)
falls inside the ITCZ, where the length of the ITCZ is fixed according to W. Results are
displayed in Figure [§] for the two months under examination: this Figure is obtained
running the algorithm with L = 1000 and M = 360. The ITCZ is mostly located in
the south (north) of the Equator in January (July), as expected on the basis of prior
knowledge concerning its seasonal behaviour. The map for January shows the double
ITCZ, which is typical of the Central Pacific region in some period during the year
(Waliser and Gautier, (1993). The proposed method allows to locate the ITCZ even
over land (in particular in Africa and South America) where data is not available, this
being reflected by higher posterior uncertainty. Of course, the width of ITCZ reported
in Figure [§]is strictly dependent on the choice of W: although this is very relevant
when studying a single month, we believe that it is not such a crucial choice if the
method is used for studying the spatio-temporal trend of the phenomenon. Indeed, in
this case it would be important to keep W fixed along the study period in order to ensure

comparability among results.

5. Discussion

We presented a Bayesian hierarchical framework for smoothing data collected world-
wide at a large number of locations. With respect to traditional methods, the proposed
model accounts for geodesic distances between the data, thus overcoming the limita-

tions of covariance functions for Euclidean spaces when applied to global datasets.

21



508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

The non-parametric model formulation proposed extends the Bayesian P-spline ap-
proach for smoothing worldwide collected data. Using a sphere as a representation of
the Globe, the idea is to build a new basis of B-splines on a suitable geodesic grid while
keeping the hierarchical model formulation of Bayesian P-splines, with the associated
advantages in terms of flexibility and computation. Two key features of P-splines are
maintained in the Geodesic P-spline model: (a) the use of local bell-shaped functions,
e.g. the B-splines on the icomesh, that yield a sparse basis matrix; (b) the use of B-
splines centred at equidistant knots, i.e. the nodes of the icomesh. Point (b) suggests
that an IGMREF for regular locations is a sensible prior distribution for the spline co-
efficients, giving stable marginal variances as opposed to the standard P-spline model
construction. Computational efficiency is due to (a) reduction of the latent field dimen-
sion, as the smoothing prior operates on the spline coefficients (low-rank smoother)
and (b) fast MCMC based on sparse Cholesky factorization of the structure matrix of
the full conditional for the latent field. These advantages allow for a fast fitting of the
model to data collected worldwide in high-resolution.

We applied the Geodesic P-spline model to the TCWV data retrieved with the AIR-
WAVE algorithm at a huge number of locations on Earth. The smoothing approach in
this example is desirable as it allows field estimation at unmonitored locations. We
provided inferential tools to locate the ITCZ based on ranking samples from the poste-
rior distribution of the latent field, estimated at a fine grid over the Globe. Results are
coherent with prior knowledge concerning ITCZ, indicating a shift towards southern
regions in autumn and winter.

A critical aspect is the choice of hyperprior for the random walk precision, (7).
We expect a large impact of 7(7) in situations where sample size is small compared
to the number of parameters required to be estimated. In the case study on TCWYV,
the sample size available for estimating each spline coeflicients is large enough, which
makes the impact of 71(7) very small. In the results presented in Section ff] we used a
Gamma with shape a = 1 and rate b = 5e — 5 for both 75 and 7, after checking that the
posterior m(7g|y) remained unchanged under different choices of a and b. We believe
that controlling that the posterior learns from the data in the same way for different
choices of the prior is a reasonable approach to test the robustness of the Bayesian
specification. On the topic of prior selection for variance parameters the literature has
shown rapid growth over the past decade; see, e.g., (Gelman| (2006); |Simpson et al.
(2017) and references therein.

The model can be extended in several directions, both in a methodological and ap-
plied sense. In this paper we focused on an IGMREF structure for the spline coefficients

equivalent to the ICAR used for lattice data, using the six surrounding knots as neigh-
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bours. Investigation of geodesic grids suitable for higher order IGMRF priors would
be interesting. Another attractive research line would be to look into a model based on
nested B-splines, defined on a set of geodesic grids of different resolution, following
Nychka et al.| (2015). In a fully Bayesian framework this requires careful hyperprior
specification, as it is not clear how to prevent confounding between nested components.

As for application, a future research line worthy of investigation is modelling the
ITCZ based on different proxy variables, focusing the analysis on a wide temporal
range, following the ideas in |Castelli et al.| (2017). The application of Geodesic P-
spline models to the 20 years of ATSR data will allow the investigation of ITCZ merid-
ional migration trends. Moreover, joint modelling of TCWV and other ITCZ related
phenomena, possibly available at misaligned locations, will result in more reliable es-
timates of the ITCZ latent field, especially at locations where TCWV retrieval is not
possible with current ATSR technology.
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