The paper focuses on the adaptation of local polynomial filters at the end of the sample period. We show that for real time estimation of signals (i.e. exactly at the boundary of the time support) we cannot rely on the automatic adaptation of the local polynomial smoothers, since the direct real time filter turns out to be strongly localised, and thereby yields extremely volatile estimates. As an alternative, we evaluate a general family of asymmetric filters that minimises the mean square revision error subject to polynomial reproduction constraints; in the case of the Henderson filter it nests the well known Musgrave's surrogate filters. The class of filters depends on unknown features of the series such as the slope and the curvature of the underlying signal, which can be estimated from the data. Several empirical examples illustrate the effectiveness of our proposal.
T. Proietti, A. Luati (2008). Real time estimation in local polynomial regression, with application to trend-cycle analysis. THE ANNALS OF APPLIED STATISTICS, 2, 4, 1523-1553 [10.1214/08-AOAS195].
Real time estimation in local polynomial regression, with application to trend-cycle analysis
LUATI, ALESSANDRA
2008
Abstract
The paper focuses on the adaptation of local polynomial filters at the end of the sample period. We show that for real time estimation of signals (i.e. exactly at the boundary of the time support) we cannot rely on the automatic adaptation of the local polynomial smoothers, since the direct real time filter turns out to be strongly localised, and thereby yields extremely volatile estimates. As an alternative, we evaluate a general family of asymmetric filters that minimises the mean square revision error subject to polynomial reproduction constraints; in the case of the Henderson filter it nests the well known Musgrave's surrogate filters. The class of filters depends on unknown features of the series such as the slope and the curvature of the underlying signal, which can be estimated from the data. Several empirical examples illustrate the effectiveness of our proposal.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.