Several properties of stationary subdivision schemes are nowadays well understood. In particular, it is known that the polynomial generation and reproduction capability of a stationary subdivision scheme is strongly connected with sum rules, its convergence, smoothness and approximation order. The aim of this paper is to show that, in the non-stationary case, exponential polynomials and approximate sum rules play an analogous role of polynomials and sum rules in the stationary case. Indeed, in the non-stationary univariate case we are able to show the following important facts: (i) reproduction of N exponential polynomials implies approximate sum rules of order N; (ii) generation of N exponential polynomials implies approximate sum rules of order N, under the additional assumption of asymptotical similarity and reproduction of one exponential polynomial; (iii) reproduction of an N-dimensional space of exponential polynomials and asymptotical similarity imply approximation order N; (iv) the sequence of basic limit functions of a non-stationary scheme reproducing one exponential polynomial converges uniformly to the basic limit function of the asymptotically similar stationary scheme
Conti C, Romani L, Yoon J (2016). Approximation order and approximate sum rules in subdivision. JOURNAL OF APPROXIMATION THEORY, 207, 380-401 [10.1016/j.jat.2016.02.014].
Approximation order and approximate sum rules in subdivision
Romani L;
2016
Abstract
Several properties of stationary subdivision schemes are nowadays well understood. In particular, it is known that the polynomial generation and reproduction capability of a stationary subdivision scheme is strongly connected with sum rules, its convergence, smoothness and approximation order. The aim of this paper is to show that, in the non-stationary case, exponential polynomials and approximate sum rules play an analogous role of polynomials and sum rules in the stationary case. Indeed, in the non-stationary univariate case we are able to show the following important facts: (i) reproduction of N exponential polynomials implies approximate sum rules of order N; (ii) generation of N exponential polynomials implies approximate sum rules of order N, under the additional assumption of asymptotical similarity and reproduction of one exponential polynomial; (iii) reproduction of an N-dimensional space of exponential polynomials and asymptotical similarity imply approximation order N; (iv) the sequence of basic limit functions of a non-stationary scheme reproducing one exponential polynomial converges uniformly to the basic limit function of the asymptotically similar stationary schemeFile | Dimensione | Formato | |
---|---|---|---|
2016b_JAT_postprint.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
450.77 kB
Formato
Adobe PDF
|
450.77 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.