We investigate the accuracy of inference in a chaotic dynamical system (Duffing oscillator) with the Unscented Kalman Filter, and quantify the dependence on the sample size, the signal to noise ratio and the initialization.

Michela Eugenia Pasetto, D.H. (2017). Statistical Inference in the Duffing System with the Unscented Kalman Filter. Groningen : Johann Bernoulli Institute.

Statistical Inference in the Duffing System with the Unscented Kalman Filter

Michela Eugenia Pasetto
Writing – Original Draft Preparation
;
Umberto Noe
Writing – Review & Editing
;
Alessandra Luati
Writing – Review & Editing
2017

Abstract

We investigate the accuracy of inference in a chaotic dynamical system (Duffing oscillator) with the Unscented Kalman Filter, and quantify the dependence on the sample size, the signal to noise ratio and the initialization.
2017
Proceedings of the 32nd International Workshop on Statistical Modelling (IWSM)
Michela Eugenia Pasetto, D.H. (2017). Statistical Inference in the Duffing System with the Unscented Kalman Filter. Groningen : Johann Bernoulli Institute.
Michela Eugenia Pasetto, Dirk Husmeier, Umberto Noe, Alessandra Luati
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/630956
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact