Human serum albumin (HSA) is the most abundant circulating plasma protein. Besides a significant contribution to the osmotic pressure, it is also involved in the fine regulation of many other physiological processes, including the balance of the redox state, the inflammatory and/or immunological responses, and the pharmacokinetic and pharmacodynamics of many drugs. Growing evidence suggests that HSA undergoes structural and functional damage in diseases characterized by an enhanced systemic inflammatory response and oxidative stress, as it occurs in chronic liver disease. Based on their clinical relevance, this review provides a summary of the most common post-translational modifications affecting HSA structural integrity and functions and their clinical relevance in the field of liver disease. The review also provides a critical description of the analytical approaches employed for the investigation of conformational alterations and the identification/quantitation of specific post-translational modifications affecting HSA. Finally, the analytical methods available for the assessment of two of the most clinically relevant non-oncotic properties of HSA, namely the binding capacity and the antioxidant activity, are critically reviewed. Among the available techniques particular attention is given to those proposed for the in vitro and in vivo investigation of structurally modified albumin.

Naldi, M., Baldassarre, M., Domenicali, M., Bartolini, M., Caraceni, P. (2017). Structural and functional integrity of human serum albumin: Analytical approaches and clinical relevance in patients with liver cirrhosis. JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 144, 138-153 [10.1016/j.jpba.2017.04.023].

Structural and functional integrity of human serum albumin: Analytical approaches and clinical relevance in patients with liver cirrhosis

Naldi, Marina;Baldassarre, Maurizio;Domenicali, Marco;Bartolini, Manuela;Caraceni, Paolo
2017

Abstract

Human serum albumin (HSA) is the most abundant circulating plasma protein. Besides a significant contribution to the osmotic pressure, it is also involved in the fine regulation of many other physiological processes, including the balance of the redox state, the inflammatory and/or immunological responses, and the pharmacokinetic and pharmacodynamics of many drugs. Growing evidence suggests that HSA undergoes structural and functional damage in diseases characterized by an enhanced systemic inflammatory response and oxidative stress, as it occurs in chronic liver disease. Based on their clinical relevance, this review provides a summary of the most common post-translational modifications affecting HSA structural integrity and functions and their clinical relevance in the field of liver disease. The review also provides a critical description of the analytical approaches employed for the investigation of conformational alterations and the identification/quantitation of specific post-translational modifications affecting HSA. Finally, the analytical methods available for the assessment of two of the most clinically relevant non-oncotic properties of HSA, namely the binding capacity and the antioxidant activity, are critically reviewed. Among the available techniques particular attention is given to those proposed for the in vitro and in vivo investigation of structurally modified albumin.
2017
Naldi, M., Baldassarre, M., Domenicali, M., Bartolini, M., Caraceni, P. (2017). Structural and functional integrity of human serum albumin: Analytical approaches and clinical relevance in patients with liver cirrhosis. JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 144, 138-153 [10.1016/j.jpba.2017.04.023].
Naldi, Marina; Baldassarre, Maurizio; Domenicali, Marco; Bartolini, Manuela; Caraceni, Paolo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/627215
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 40
social impact