Equivalent Static Wind Loads (ESWLs) represent an extremely useful tool for the characterization of the structural response to the wind action and provide a convenient way for structural engineers in order to include the results of a complete, rigorous, buffeting analysis in the design process. Recently, a novel approach to the determination of ESWLs has been proposed which is based on the adoption of Proper Skin Modes for the characterization of the static/quasi-static structural response. In that study, the reconstruction of the extreme internal forces over the structure for all structural members has been performed in a least square sense and a smoothed version of the maximum/minimum operators, typical of envelope calculations, has been adopted. By using such formulation, it is possible to use efficient, gradient-based, optimization techniques in the minimization procedure which leads to the identification of ESWLs. In this paper, two refinements of the original technique are proposed: the least square approach is modified in order to ensure a complete covering of the envelope and the original formulation is extended in order to take into consideration the contemporaneity between effects. Finally, the proposed approach is tested on a large span suspended roof derived from the structural model of the New Juventus Stadium showing extremely encouraging results.

Patruno, L., Ricci, M.*, de Miranda, S., Ubertini, F. (2017). Equivalent Static Wind Loads: Recent developments and analysis of a suspended roof. ENGINEERING STRUCTURES, 148, 1-10 [10.1016/j.engstruct.2017.05.071].

Equivalent Static Wind Loads: Recent developments and analysis of a suspended roof

Patruno, L.;Ricci, M.;de Miranda, S.;Ubertini, F.
2017

Abstract

Equivalent Static Wind Loads (ESWLs) represent an extremely useful tool for the characterization of the structural response to the wind action and provide a convenient way for structural engineers in order to include the results of a complete, rigorous, buffeting analysis in the design process. Recently, a novel approach to the determination of ESWLs has been proposed which is based on the adoption of Proper Skin Modes for the characterization of the static/quasi-static structural response. In that study, the reconstruction of the extreme internal forces over the structure for all structural members has been performed in a least square sense and a smoothed version of the maximum/minimum operators, typical of envelope calculations, has been adopted. By using such formulation, it is possible to use efficient, gradient-based, optimization techniques in the minimization procedure which leads to the identification of ESWLs. In this paper, two refinements of the original technique are proposed: the least square approach is modified in order to ensure a complete covering of the envelope and the original formulation is extended in order to take into consideration the contemporaneity between effects. Finally, the proposed approach is tested on a large span suspended roof derived from the structural model of the New Juventus Stadium showing extremely encouraging results.
2017
Patruno, L., Ricci, M.*, de Miranda, S., Ubertini, F. (2017). Equivalent Static Wind Loads: Recent developments and analysis of a suspended roof. ENGINEERING STRUCTURES, 148, 1-10 [10.1016/j.engstruct.2017.05.071].
Patruno, L.; Ricci, M.*; de Miranda, S.; Ubertini, F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/621928
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact