This paper proposes an asynchronous serialized link for NoC that can achieve the same levels of performance in terms of flits per second as a synchronous link but with a reduced number of wires in the point to point switch links and reduced power consumption. This is achieved by employing serialization in the asynchronous domain as opposed to synchronous to facilitate the removal of global clocking on the serial links. Based on transistor level simulations using 0.12 ¿m foundry models it has been shown that it is possible to achieve the same level of performance as synchronous but with 75% reduction in wires and 65% reduction in power for a 300 MFlit/s link with 8 buffers with a switch clock speed of 300 MHz. Furthermore the paper presents the design requirements arising from interfacing switches of synchronous NoC and asynchronous serial links.
S. Ogg, E. Valli, B. Al-Hashimi, A. Yakovlev, C. D'Alessandro, L. Benini (2008). Serialized Asynchronous Links for NoC. s.l : s.n.
Serialized Asynchronous Links for NoC
BENINI, LUCA
2008
Abstract
This paper proposes an asynchronous serialized link for NoC that can achieve the same levels of performance in terms of flits per second as a synchronous link but with a reduced number of wires in the point to point switch links and reduced power consumption. This is achieved by employing serialization in the asynchronous domain as opposed to synchronous to facilitate the removal of global clocking on the serial links. Based on transistor level simulations using 0.12 ¿m foundry models it has been shown that it is possible to achieve the same level of performance as synchronous but with 75% reduction in wires and 65% reduction in power for a 300 MFlit/s link with 8 buffers with a switch clock speed of 300 MHz. Furthermore the paper presents the design requirements arising from interfacing switches of synchronous NoC and asynchronous serial links.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.