Path planning is one of the key functional blocks for autonomous vehicles constantly updating their route in real-time. Heterogeneous many-cores are appealing candidates for its execution, but the high degree of resource sharing results in very unpredictable timing behavior. The predictable execution model (PREM) has the potential to enable the deployment of real-time applications on top of commercial off-the-shelf (COTS) heterogeneous systems by separating compute and memory operations, and scheduling the latter in an interference-free manner. This paper studies PREM applied to a state-of-the-art path planner running on a NVIDIA Tegra X1, providing insight on memory sharing and its impact on performance and predictability. The results show that PREM reduces the execution time variance to near-zero, providing a 3× decrease in the worst case execution time.

Forsberg, B., Palossi, D., Marongiu, A., Benini, L. (2017). GPU-Accelerated Real-Time Path Planning and the Predictable Execution Model. Elsevier B.V. [10.1016/j.procs.2017.05.219].

GPU-Accelerated Real-Time Path Planning and the Predictable Execution Model

Marongiu, Andrea;Benini, Luca
2017

Abstract

Path planning is one of the key functional blocks for autonomous vehicles constantly updating their route in real-time. Heterogeneous many-cores are appealing candidates for its execution, but the high degree of resource sharing results in very unpredictable timing behavior. The predictable execution model (PREM) has the potential to enable the deployment of real-time applications on top of commercial off-the-shelf (COTS) heterogeneous systems by separating compute and memory operations, and scheduling the latter in an interference-free manner. This paper studies PREM applied to a state-of-the-art path planner running on a NVIDIA Tegra X1, providing insight on memory sharing and its impact on performance and predictability. The results show that PREM reduces the execution time variance to near-zero, providing a 3× decrease in the worst case execution time.
2017
Procedia Computer Science
2428
2432
Forsberg, B., Palossi, D., Marongiu, A., Benini, L. (2017). GPU-Accelerated Real-Time Path Planning and the Predictable Execution Model. Elsevier B.V. [10.1016/j.procs.2017.05.219].
Forsberg, Bjã¶rn; Palossi, Daniele; Marongiu, Andrea; Benini, Luca
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/613675
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact