Internet-of-Things devices need sensors with low power footprint and capable of producing semantically rich data. Promising candidates are spiking sensors that use asynchronous Address-Event Representation (AER) carrying information within inter-spike times. To minimize the overhead of coupling AER sensors with off-The-shelf microcontrollers, we propose an FPGA-based methodology that i) tags the AER spikes with timestamps to make them carriable by standard interfaces (e.g. I2S, SPI); ii) uses a recursively divided clock generated on-chip by a pausable ring-oscillator, to reduce power while keeping accuracy above 97% on timestamps. We prototyped our methodology on a IGLOOnano AGLN250 FPGA, consuming less than 4.5mW under a 550kevt/s spike rate (i.e. a noisy environment), and down to 50uW in absence of spikes.

Di Mauro, A., Conti, F., Benini, L. (2017). An Ultra-Low Power Address-Event Sensor Interface for Energy-Proportional Time-To-Information Extraction. Institute of Electrical and Electronics Engineers Inc. [10.1145/3061639.3062201].

An Ultra-Low Power Address-Event Sensor Interface for Energy-Proportional Time-To-Information Extraction

Conti, Francesco;Benini, Luca
2017

Abstract

Internet-of-Things devices need sensors with low power footprint and capable of producing semantically rich data. Promising candidates are spiking sensors that use asynchronous Address-Event Representation (AER) carrying information within inter-spike times. To minimize the overhead of coupling AER sensors with off-The-shelf microcontrollers, we propose an FPGA-based methodology that i) tags the AER spikes with timestamps to make them carriable by standard interfaces (e.g. I2S, SPI); ii) uses a recursively divided clock generated on-chip by a pausable ring-oscillator, to reduce power while keeping accuracy above 97% on timestamps. We prototyped our methodology on a IGLOOnano AGLN250 FPGA, consuming less than 4.5mW under a 550kevt/s spike rate (i.e. a noisy environment), and down to 50uW in absence of spikes.
2017
Proceedings - Design Automation Conference
1
6
Di Mauro, A., Conti, F., Benini, L. (2017). An Ultra-Low Power Address-Event Sensor Interface for Energy-Proportional Time-To-Information Extraction. Institute of Electrical and Electronics Engineers Inc. [10.1145/3061639.3062201].
Di Mauro, Alfio; Conti, Francesco; Benini, Luca
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/613494
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact