We consider a defaultable asset whose risk-neutral pricing dynamics are described by an exponential Lévy-type martingale. This class of models allows for a local volatility, local default intensity and a locally dependent Lévy measure. We present a pricing method for Bermudan options based on an analytical approximation of the characteristic function combined with the COS method. Due to a special form of the obtained characteristic function the price can be computed using a fast Fourier transform-based algorithm resulting in a fast and accurate calculation.

Borovykh, A., Pascucci, A., Oosterlee, C.W. (2017). Bermudan option valuation under state-dependent models. Springer New York LLC [10.1007/978-3-319-66536-8_6].

Bermudan option valuation under state-dependent models

Borovykh, Anastasia
Membro del Collaboration Group
;
Pascucci, Andrea
Membro del Collaboration Group
;
2017

Abstract

We consider a defaultable asset whose risk-neutral pricing dynamics are described by an exponential Lévy-type martingale. This class of models allows for a local volatility, local default intensity and a locally dependent Lévy measure. We present a pricing method for Bermudan options based on an analytical approximation of the characteristic function combined with the COS method. Due to a special form of the obtained characteristic function the price can be computed using a fast Fourier transform-based algorithm resulting in a fast and accurate calculation.
2017
Springer Proceedings in Mathematics and Statistics
127
138
Borovykh, A., Pascucci, A., Oosterlee, C.W. (2017). Bermudan option valuation under state-dependent models. Springer New York LLC [10.1007/978-3-319-66536-8_6].
Borovykh, Anastasia; Pascucci, Andrea; Oosterlee, Cornelis W.
File in questo prodotto:
File Dimensione Formato  
BPO_icasqf_v3.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 173.77 kB
Formato Adobe PDF
173.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/613260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact