Real-Time biosignal classification in power-constrained embedded applications is a key step in designing portable e-healtb devices requiring hardware integration along with concurrent signal processing. This paper presents an application based on a novel biomedical System-On-Chip (SoC) for signal acquisition and processing combining a homogeneous multi-core cluster with a versatile bio-potential front-end. The presented implementation acquires raw EMG signals from 3 passive gel-electrodes and classifies 3 hand gestures using a Support Vector Machine (SVM) pattern recognition algorithm. Performance matches state-of-The-Art high-end systems both in terms of recognition accuracy (>85%) and of real-Time execution (gesture recognition time ≪300 ms). The power consumption of the employed biomedical SoC is below 10 mW, outperforming implementations on conunercial MCUs by a factor of 10, ensuring a battery life of up to 160 hours with a common Li-ion 1600 mAh battery.
A sub-10mW real-Time implementation for EMG hand gesture recognition based on a multi-core biomedical SoC
Benatti, Simone;Montagna, Fabio;Farella, Elisabetta;Benini, Luca
2017
Abstract
Real-Time biosignal classification in power-constrained embedded applications is a key step in designing portable e-healtb devices requiring hardware integration along with concurrent signal processing. This paper presents an application based on a novel biomedical System-On-Chip (SoC) for signal acquisition and processing combining a homogeneous multi-core cluster with a versatile bio-potential front-end. The presented implementation acquires raw EMG signals from 3 passive gel-electrodes and classifies 3 hand gestures using a Support Vector Machine (SVM) pattern recognition algorithm. Performance matches state-of-The-Art high-end systems both in terms of recognition accuracy (>85%) and of real-Time execution (gesture recognition time ≪300 ms). The power consumption of the employed biomedical SoC is below 10 mW, outperforming implementations on conunercial MCUs by a factor of 10, ensuring a battery life of up to 160 hours with a common Li-ion 1600 mAh battery.File | Dimensione | Formato | |
---|---|---|---|
IWASI2107.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.