The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium-high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross-and within-tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra-and inter-sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross-tissue width of expression for more than 31, 000 transcripts. The present study conducted a meta-analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue- and organ-specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative, quantitative portrait of the relative, typical gene-expression profile in the form of searchable database tables.
Caracausi, M., Piovesan, A., Antonaros, F., Strippoli, P., Vitale, L., Pelleri, M.C. (2017). Systematic identification of human housekeeping genes possibly useful as references in gene expression studies. MOLECULAR MEDICINE REPORTS, 16(3), 2397-2410 [10.3892/mmr.2017.6944].
Systematic identification of human housekeeping genes possibly useful as references in gene expression studies
CARACAUSI, MARIA;PIOVESAN, ALLISON;ANTONAROS, FRANCESCA;STRIPPOLI, PIERLUIGI;VITALE, LORENZA;PELLERI, MARIA CHIARA
2017
Abstract
The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium-high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross-and within-tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra-and inter-sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross-tissue width of expression for more than 31, 000 transcripts. The present study conducted a meta-analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue- and organ-specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative, quantitative portrait of the relative, typical gene-expression profile in the form of searchable database tables.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.