In this paper we present D.A.V.I.D.E. (Development for an Added Value Infrastructure Designed in Europe), an innovative and energy efficient High Performance Computing cluster designed by E4 Computer Engineering for PRACE (Partnership for Advanced Computing in Europe). D.A.V.I.D.E. is built using best-in-class components (IBM’s POWER8-NVLink CPUs, NVIDIA TESLA P100 GPUs, Mellanox InfiniBand EDR 100 Gb/s networking) plus custom hardware and an innovative system middleware software. D.A.V.I.D.E. features (i) a dedicated power monitor interface, built around the BeagleBone Black Board that allows high frequency sampling directly from the power backplane and scalable integration with the internal node telemetry and system level power management software; (ii) a custom-built chassis, based on OpenRack form factor, and liquid cooling that allows the system to be used in modern, energy efficient, datacenter; (iii) software components designed for enabling fine grain power monitoring, power management (i.e. power capping and energy aware job scheduling) and application power profiling, based on dedicated machine learning components. Software APIs are offered to developers and users to tune the computing node performance and power consumption around on the application requirements. The first pilot system that we will deploy at the beginning of 2017, will demonstrate key HPC applications from different fields ported and optimized for this innovative platform.

Abu Ahmad, W., Bartolini, A., Beneventi, F., Benini, L., Borghesi, A., Cicala, M., et al. (2017). Design of an Energy Aware Petaflops Class High Performance Cluster Based on Power Architecture. IEEE [10.1109/IPDPSW.2017.22].

Design of an Energy Aware Petaflops Class High Performance Cluster Based on Power Architecture

BARTOLINI, ANDREA;BENEVENTI, FRANCESCO;BENINI, LUCA;BORGHESI, ANDREA;
2017

Abstract

In this paper we present D.A.V.I.D.E. (Development for an Added Value Infrastructure Designed in Europe), an innovative and energy efficient High Performance Computing cluster designed by E4 Computer Engineering for PRACE (Partnership for Advanced Computing in Europe). D.A.V.I.D.E. is built using best-in-class components (IBM’s POWER8-NVLink CPUs, NVIDIA TESLA P100 GPUs, Mellanox InfiniBand EDR 100 Gb/s networking) plus custom hardware and an innovative system middleware software. D.A.V.I.D.E. features (i) a dedicated power monitor interface, built around the BeagleBone Black Board that allows high frequency sampling directly from the power backplane and scalable integration with the internal node telemetry and system level power management software; (ii) a custom-built chassis, based on OpenRack form factor, and liquid cooling that allows the system to be used in modern, energy efficient, datacenter; (iii) software components designed for enabling fine grain power monitoring, power management (i.e. power capping and energy aware job scheduling) and application power profiling, based on dedicated machine learning components. Software APIs are offered to developers and users to tune the computing node performance and power consumption around on the application requirements. The first pilot system that we will deploy at the beginning of 2017, will demonstrate key HPC applications from different fields ported and optimized for this innovative platform.
2017
2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
964
973
Abu Ahmad, W., Bartolini, A., Beneventi, F., Benini, L., Borghesi, A., Cicala, M., et al. (2017). Design of an Energy Aware Petaflops Class High Performance Cluster Based on Power Architecture. IEEE [10.1109/IPDPSW.2017.22].
Abu Ahmad, Wissam; Bartolini, Andrea; Beneventi, Francesco; Benini, Luca; Borghesi, Andrea; Cicala, Marco; Forestieri, Privato; Gianfreda, Cosimo; Gre...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/605719
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact