We consider the parameterization f=(f0:f1:f2)of a plane rational curve C of degree n, and we study the singularities of C via such parameterization. We use the projection from the rational normal curve Cn⊂Pn to C and its interplay with the secant varieties to Cn. In particular, we define via f certain 0-dimensional schemes Xk⊂Pk, 2≤k≤(n−1), which encode all information on the singularities of multiplicity ≥k of C (e.g. using X2 we can give a criterion to determine whether C is a cuspidal curve or has only ordinary singularities). We give a series of algorithms which allow one to obtain information about the singularities from such schemes.

Gimigliano, A., Bernardi, A., Idà, M. (2018). Singularities of plane rational curves via projections. JOURNAL OF SYMBOLIC COMPUTATION, 86, 189-214 [10.1016/j.jsc.2017.05.003].

Singularities of plane rational curves via projections

Gimigliano, Alessandro;Idà, Monica
2018

Abstract

We consider the parameterization f=(f0:f1:f2)of a plane rational curve C of degree n, and we study the singularities of C via such parameterization. We use the projection from the rational normal curve Cn⊂Pn to C and its interplay with the secant varieties to Cn. In particular, we define via f certain 0-dimensional schemes Xk⊂Pk, 2≤k≤(n−1), which encode all information on the singularities of multiplicity ≥k of C (e.g. using X2 we can give a criterion to determine whether C is a cuspidal curve or has only ordinary singularities). We give a series of algorithms which allow one to obtain information about the singularities from such schemes.
2018
Gimigliano, A., Bernardi, A., Idà, M. (2018). Singularities of plane rational curves via projections. JOURNAL OF SYMBOLIC COMPUTATION, 86, 189-214 [10.1016/j.jsc.2017.05.003].
Gimigliano, Alessandro; Bernardi, Alessandra; Idà, Monica
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0747717117300524-main.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 697.96 kB
Formato Adobe PDF
697.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/592019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact